亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

WGAN-CL: A Wasserstein GAN with confidence loss for small-sample augmentation

计算机科学 过度拟合 人工智能 样品(材料) 分类器(UML) 卷积神经网络 模式识别(心理学) 人工神经网络 机器学习 色谱法 化学
作者
Jiaqi Mi,Congcong Ma,Lihua Zheng,Man Zhang,Minzan Li,Minjuan Wang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:233: 120943-120943 被引量:14
标识
DOI:10.1016/j.eswa.2023.120943
摘要

The small-sample task is a current challenge in the field of deep learning, due to the huge annotation cost and the inherent limitations of targets, such as the acquisition of rare animal and plant images. Data augmentation is an effective method to solve the semantic sparseness and overfitting of deep convolution neural network in small-sample classification, but its effectiveness remains to be improved. We propose a Wasserstein GAN with confidence loss (WGAN-CL) to implement the expansion of small-sample plant dataset. Firstly, a shallower GAN's structure is designed to adapt to less plant data. Meanwhile, shortcut-stream connections are brought into the basic network to enlarge the solution space of the model without producing additional training parameters. Secondly, the Wasserstein distance combined with confidence loss is used for optimizing the model. Experiments demonstrate that the Wasserstein distance with gradient penalty guarantees the stability of model training and the diversity of outputs. And the sample screening strategy based on confidence loss can ensure that the generated image is close to the real image in semantic features, which is critical for subsequent image classification. To verify the effectiveness of the WGAN-CL in plant small-sample augmentation, 2000 flower images of 5 categories in the "Flowers" dataset are utilized as training samples, while 2000 augmented images are employed for model training as well to improve the performance of a classical classifier. WGAN-CL has a significant performance improvement over state-of-the-art technologies, i.e., a 2.2% improvement in recall and a 2% improvement in F1-score. Experiments on the "Plant Leaves" dataset also achieved excellent results demonstrating that WGAN-CL can be migrated to other tasks. WGAN-CL uses less computational resources while considering both effectiveness and robustness, proved the practicality of our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GingerF完成签到,获得积分0
3秒前
量子星尘发布了新的文献求助10
3秒前
12秒前
kw98完成签到 ,获得积分10
20秒前
田様应助SW采纳,获得10
47秒前
48秒前
51秒前
57秒前
1分钟前
SW发布了新的文献求助10
1分钟前
nav完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
111111111发布了新的文献求助10
1分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
优秀的流沙完成签到,获得积分10
3分钟前
4分钟前
4分钟前
CipherSage应助科研通管家采纳,获得10
4分钟前
十二倍根号二完成签到,获得积分20
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
SW完成签到,获得积分10
5分钟前
CipherSage应助SW采纳,获得10
5分钟前
5分钟前
SW发布了新的文献求助10
5分钟前
5分钟前
科目三应助科研通管家采纳,获得10
6分钟前
zsmj23完成签到 ,获得积分0
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
研小小小小白完成签到,获得积分10
6分钟前
111111111发布了新的文献求助10
6分钟前
7分钟前
7分钟前
7分钟前
sofardli发布了新的文献求助20
7分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957065
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111256
捐赠科研通 3234136
什么是DOI,文献DOI怎么找? 1787751
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802264