WGAN-CL: A Wasserstein GAN with confidence loss for small-sample augmentation

计算机科学 过度拟合 人工智能 样品(材料) 分类器(UML) 卷积神经网络 模式识别(心理学) 人工神经网络 机器学习 色谱法 化学
作者
Jiaqi Mi,Congcong Ma,Lihua Zheng,Man Zhang,Minzan Li,Minjuan Wang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:233: 120943-120943 被引量:14
标识
DOI:10.1016/j.eswa.2023.120943
摘要

The small-sample task is a current challenge in the field of deep learning, due to the huge annotation cost and the inherent limitations of targets, such as the acquisition of rare animal and plant images. Data augmentation is an effective method to solve the semantic sparseness and overfitting of deep convolution neural network in small-sample classification, but its effectiveness remains to be improved. We propose a Wasserstein GAN with confidence loss (WGAN-CL) to implement the expansion of small-sample plant dataset. Firstly, a shallower GAN's structure is designed to adapt to less plant data. Meanwhile, shortcut-stream connections are brought into the basic network to enlarge the solution space of the model without producing additional training parameters. Secondly, the Wasserstein distance combined with confidence loss is used for optimizing the model. Experiments demonstrate that the Wasserstein distance with gradient penalty guarantees the stability of model training and the diversity of outputs. And the sample screening strategy based on confidence loss can ensure that the generated image is close to the real image in semantic features, which is critical for subsequent image classification. To verify the effectiveness of the WGAN-CL in plant small-sample augmentation, 2000 flower images of 5 categories in the "Flowers" dataset are utilized as training samples, while 2000 augmented images are employed for model training as well to improve the performance of a classical classifier. WGAN-CL has a significant performance improvement over state-of-the-art technologies, i.e., a 2.2% improvement in recall and a 2% improvement in F1-score. Experiments on the "Plant Leaves" dataset also achieved excellent results demonstrating that WGAN-CL can be migrated to other tasks. WGAN-CL uses less computational resources while considering both effectiveness and robustness, proved the practicality of our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
领导范儿应助Zidawhy采纳,获得10
1秒前
2秒前
快乐的胖子完成签到,获得积分0
2秒前
SciGPT应助li采纳,获得10
2秒前
Wendy完成签到,获得积分10
3秒前
完美书桃完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
hanxuling123发布了新的文献求助10
4秒前
王雅新完成签到,获得积分10
4秒前
4秒前
4秒前
柠檬柠檬完成签到,获得积分10
4秒前
敏感新之完成签到,获得积分10
5秒前
5秒前
打打应助陈少华采纳,获得10
5秒前
领导范儿应助GDD采纳,获得10
6秒前
6秒前
myy完成签到,获得积分10
7秒前
7秒前
7秒前
脑洞疼应助一只柯羊采纳,获得10
7秒前
果子发布了新的文献求助10
8秒前
8秒前
9秒前
大模型应助激情的幼枫采纳,获得10
9秒前
小杨完成签到,获得积分10
9秒前
hanxuling123完成签到,获得积分10
10秒前
平常傲白发布了新的文献求助10
10秒前
CZmike完成签到,获得积分20
11秒前
liu bo给liu bo的求助进行了留言
11秒前
11秒前
12秒前
orixero应助kim采纳,获得10
12秒前
12秒前
Christina发布了新的文献求助10
13秒前
优秀思菱完成签到,获得积分20
13秒前
走走发布了新的文献求助10
13秒前
13秒前
Zidawhy发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603191
求助须知:如何正确求助?哪些是违规求助? 4012087
关于积分的说明 12421692
捐赠科研通 3692454
什么是DOI,文献DOI怎么找? 2035657
邀请新用户注册赠送积分活动 1068823
科研通“疑难数据库(出版商)”最低求助积分说明 953316