WGAN-CL: A Wasserstein GAN with confidence loss for small-sample augmentation

计算机科学 过度拟合 人工智能 样品(材料) 分类器(UML) 卷积神经网络 模式识别(心理学) 人工神经网络 机器学习 色谱法 化学
作者
Jiaqi Mi,Congcong Ma,Lihua Zheng,Man Zhang,Minzan Li,Minjuan Wang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:233: 120943-120943 被引量:14
标识
DOI:10.1016/j.eswa.2023.120943
摘要

The small-sample task is a current challenge in the field of deep learning, due to the huge annotation cost and the inherent limitations of targets, such as the acquisition of rare animal and plant images. Data augmentation is an effective method to solve the semantic sparseness and overfitting of deep convolution neural network in small-sample classification, but its effectiveness remains to be improved. We propose a Wasserstein GAN with confidence loss (WGAN-CL) to implement the expansion of small-sample plant dataset. Firstly, a shallower GAN's structure is designed to adapt to less plant data. Meanwhile, shortcut-stream connections are brought into the basic network to enlarge the solution space of the model without producing additional training parameters. Secondly, the Wasserstein distance combined with confidence loss is used for optimizing the model. Experiments demonstrate that the Wasserstein distance with gradient penalty guarantees the stability of model training and the diversity of outputs. And the sample screening strategy based on confidence loss can ensure that the generated image is close to the real image in semantic features, which is critical for subsequent image classification. To verify the effectiveness of the WGAN-CL in plant small-sample augmentation, 2000 flower images of 5 categories in the "Flowers" dataset are utilized as training samples, while 2000 augmented images are employed for model training as well to improve the performance of a classical classifier. WGAN-CL has a significant performance improvement over state-of-the-art technologies, i.e., a 2.2% improvement in recall and a 2% improvement in F1-score. Experiments on the "Plant Leaves" dataset also achieved excellent results demonstrating that WGAN-CL can be migrated to other tasks. WGAN-CL uses less computational resources while considering both effectiveness and robustness, proved the practicality of our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
YE发布了新的文献求助30
刚刚
MHB应助叫滚滚采纳,获得10
1秒前
wzxxxx发布了新的文献求助10
1秒前
斯文败类应助勤劳傲晴采纳,获得10
2秒前
shilong.yang发布了新的文献求助10
2秒前
momo完成签到,获得积分10
3秒前
wxp_bioinfo完成签到,获得积分10
4秒前
4秒前
桐桐应助wangg采纳,获得10
4秒前
Jun完成签到,获得积分10
5秒前
芝士的酒发布了新的文献求助50
5秒前
6秒前
赘婿应助复杂的问玉采纳,获得30
6秒前
7秒前
7秒前
8秒前
端庄白开水完成签到,获得积分10
8秒前
吕春雨发布了新的文献求助10
8秒前
大个应助wxp_bioinfo采纳,获得10
9秒前
yqq完成签到 ,获得积分10
9秒前
10秒前
11秒前
芝士发布了新的文献求助10
11秒前
橘子发布了新的文献求助10
12秒前
12秒前
12秒前
晨曦发布了新的文献求助10
13秒前
13秒前
kobiy完成签到 ,获得积分10
13秒前
wu完成签到 ,获得积分10
14秒前
蛋泥完成签到,获得积分10
14秒前
顾矜应助mingjie采纳,获得10
15秒前
zhaowenxian发布了新的文献求助10
15秒前
勤劳傲晴发布了新的文献求助10
16秒前
16秒前
橘子完成签到,获得积分10
18秒前
可耐的从安完成签到 ,获得积分10
19秒前
zho应助背后的诺言采纳,获得10
19秒前
粥粥完成签到,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794