WGAN-CL: A Wasserstein GAN with confidence loss for small-sample augmentation

计算机科学 过度拟合 人工智能 样品(材料) 分类器(UML) 卷积神经网络 模式识别(心理学) 人工神经网络 机器学习 化学 色谱法
作者
Jiaqi Mi,Congcong Ma,Lihua Zheng,Man Zhang,Minzan Li,Minjuan Wang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:233: 120943-120943 被引量:9
标识
DOI:10.1016/j.eswa.2023.120943
摘要

The small-sample task is a current challenge in the field of deep learning, due to the huge annotation cost and the inherent limitations of targets, such as the acquisition of rare animal and plant images. Data augmentation is an effective method to solve the semantic sparseness and overfitting of deep convolution neural network in small-sample classification, but its effectiveness remains to be improved. We propose a Wasserstein GAN with confidence loss (WGAN-CL) to implement the expansion of small-sample plant dataset. Firstly, a shallower GAN's structure is designed to adapt to less plant data. Meanwhile, shortcut-stream connections are brought into the basic network to enlarge the solution space of the model without producing additional training parameters. Secondly, the Wasserstein distance combined with confidence loss is used for optimizing the model. Experiments demonstrate that the Wasserstein distance with gradient penalty guarantees the stability of model training and the diversity of outputs. And the sample screening strategy based on confidence loss can ensure that the generated image is close to the real image in semantic features, which is critical for subsequent image classification. To verify the effectiveness of the WGAN-CL in plant small-sample augmentation, 2000 flower images of 5 categories in the "Flowers" dataset are utilized as training samples, while 2000 augmented images are employed for model training as well to improve the performance of a classical classifier. WGAN-CL has a significant performance improvement over state-of-the-art technologies, i.e., a 2.2% improvement in recall and a 2% improvement in F1-score. Experiments on the "Plant Leaves" dataset also achieved excellent results demonstrating that WGAN-CL can be migrated to other tasks. WGAN-CL uses less computational resources while considering both effectiveness and robustness, proved the practicality of our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ning完成签到,获得积分10
刚刚
FashionBoy应助月yue采纳,获得10
刚刚
都是发布了新的文献求助10
刚刚
ding应助聪明的宛菡采纳,获得10
1秒前
我是老大应助墨瞳采纳,获得10
1秒前
合适不愁完成签到,获得积分10
3秒前
科研通AI2S应助gujianhua采纳,获得10
5秒前
5秒前
whitepiece完成签到,获得积分10
7秒前
向晨完成签到,获得积分10
8秒前
10秒前
12秒前
打打应助111采纳,获得10
15秒前
月yue完成签到,获得积分10
16秒前
月yue发布了新的文献求助10
19秒前
19秒前
salty完成签到 ,获得积分10
19秒前
22秒前
24秒前
雪白小猫咪完成签到,获得积分10
24秒前
fangplus发布了新的文献求助10
24秒前
111发布了新的文献求助10
27秒前
姜建正完成签到,获得积分10
33秒前
Singularity应助文艺鞋垫采纳,获得20
35秒前
36秒前
寒桥完成签到,获得积分10
37秒前
高贵的书包完成签到,获得积分10
40秒前
45秒前
麻薯头头发布了新的文献求助10
50秒前
51秒前
nianshu完成签到 ,获得积分10
52秒前
111发布了新的文献求助10
54秒前
fangplus完成签到,获得积分10
54秒前
心已死何来心完成签到,获得积分10
55秒前
墨瞳发布了新的文献求助10
56秒前
57秒前
57秒前
善良书蕾完成签到,获得积分10
58秒前
Vicki完成签到,获得积分10
59秒前
deadpool完成签到,获得积分10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137664
求助须知:如何正确求助?哪些是违规求助? 2788576
关于积分的说明 7787679
捐赠科研通 2444950
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601023