WGAN-CL: A Wasserstein GAN with confidence loss for small-sample augmentation

计算机科学 过度拟合 人工智能 样品(材料) 分类器(UML) 卷积神经网络 模式识别(心理学) 人工神经网络 机器学习 化学 色谱法
作者
Jiaqi Mi,Congcong Ma,Lihua Zheng,Man Zhang,Minzan Li,Minjuan Wang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:233: 120943-120943 被引量:14
标识
DOI:10.1016/j.eswa.2023.120943
摘要

The small-sample task is a current challenge in the field of deep learning, due to the huge annotation cost and the inherent limitations of targets, such as the acquisition of rare animal and plant images. Data augmentation is an effective method to solve the semantic sparseness and overfitting of deep convolution neural network in small-sample classification, but its effectiveness remains to be improved. We propose a Wasserstein GAN with confidence loss (WGAN-CL) to implement the expansion of small-sample plant dataset. Firstly, a shallower GAN's structure is designed to adapt to less plant data. Meanwhile, shortcut-stream connections are brought into the basic network to enlarge the solution space of the model without producing additional training parameters. Secondly, the Wasserstein distance combined with confidence loss is used for optimizing the model. Experiments demonstrate that the Wasserstein distance with gradient penalty guarantees the stability of model training and the diversity of outputs. And the sample screening strategy based on confidence loss can ensure that the generated image is close to the real image in semantic features, which is critical for subsequent image classification. To verify the effectiveness of the WGAN-CL in plant small-sample augmentation, 2000 flower images of 5 categories in the "Flowers" dataset are utilized as training samples, while 2000 augmented images are employed for model training as well to improve the performance of a classical classifier. WGAN-CL has a significant performance improvement over state-of-the-art technologies, i.e., a 2.2% improvement in recall and a 2% improvement in F1-score. Experiments on the "Plant Leaves" dataset also achieved excellent results demonstrating that WGAN-CL can be migrated to other tasks. WGAN-CL uses less computational resources while considering both effectiveness and robustness, proved the practicality of our model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
努力加油煤老八完成签到 ,获得积分0
刚刚
刚刚
吃的完成签到,获得积分10
1秒前
1秒前
Ylyyyyyy发布了新的文献求助10
1秒前
2秒前
徐英杰完成签到,获得积分10
2秒前
缓慢向梦完成签到,获得积分10
2秒前
llll完成签到,获得积分10
2秒前
3秒前
星辰大海应助yuanzhilong采纳,获得10
3秒前
李爱国应助ZYX采纳,获得10
3秒前
3秒前
舒心绮琴发布了新的文献求助10
3秒前
4秒前
cxf发布了新的文献求助10
4秒前
4秒前
5秒前
脑洞疼应助眼睛大乐珍采纳,获得10
5秒前
TC完成签到,获得积分10
7秒前
lxw19960125发布了新的文献求助10
7秒前
小仙完成签到,获得积分10
7秒前
ugk完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
骆晓发布了新的文献求助10
8秒前
酒笙完成签到,获得积分10
9秒前
潇洒依白发布了新的文献求助10
9秒前
祖金杰完成签到,获得积分10
9秒前
9秒前
钙离子发布了新的文献求助10
10秒前
OK完成签到,获得积分10
10秒前
zedhumble完成签到,获得积分10
11秒前
Zzh完成签到,获得积分10
11秒前
哈哈哈完成签到,获得积分10
11秒前
蓝胖子完成签到 ,获得积分10
11秒前
舒心的怜翠完成签到 ,获得积分10
12秒前
倩女幽魂完成签到,获得积分10
12秒前
12秒前
阳光的梦寒完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5707637
求助须知:如何正确求助?哪些是违规求助? 5185201
关于积分的说明 15251349
捐赠科研通 4860931
什么是DOI,文献DOI怎么找? 2609076
邀请新用户注册赠送积分活动 1559819
关于科研通互助平台的介绍 1517579