Paternity Test from Offspring Fingerprint Using Parallel Convolutional Network

后代 指纹(计算) 考试(生物学) 计算机科学 人工智能 模式识别(心理学) 生物 遗传学 古生物学 怀孕
作者
Diptadip Maiti,Debashis Das
标识
DOI:10.2139/ssrn.4452067
摘要

The research of Fingerprint Ridge Structure (FRS), conducted by early pioneers in the field of dermatoglyphics, demonstrated a clear correlation between the size, shape, and spacing of the ridges and the inheritance of a fingerprint pattern. This article proposes a novel approach to identify paternity or hereditary relationship among parent and child with the help of fingerprint using deep network learning. Fingerprint image of five fingers of right hand from father, mother and child are acquired from 100 families to prepare a dataset for training and testing of the proposed network. A parallel deep convolution network is developed and trained with the dataset for heredity testing. The network achieve a 87.94\% training accuracy and 82.23\% validation accuracy. Based on the outcome of the proposed method, we claim its possibility to identify hereditical relationship using fingerprint and the proposed solution may also be useful in various clinical and genetically correlated studies and court of law. HighlightsA deep learning approach to determine paternity relation from offspring fingerprint image.A parallel deep learning network that accepts parent and offspring fingerprint image as input and verifies the paternity relationship between the fingerprints.The deep neural network model is too lightweight to implement in any device like mobile phone or tiny biometric authentication device.The network can able to produce satisfactory outcome even if trained in a limited time on any dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
4秒前
chouchou发布了新的文献求助10
4秒前
6秒前
wang完成签到 ,获得积分10
7秒前
静待花开发布了新的文献求助10
10秒前
yt发布了新的文献求助10
11秒前
Billy发布了新的文献求助50
12秒前
kk应助123456采纳,获得10
12秒前
科研小台应助银外采纳,获得10
18秒前
三磷酸腺苷完成签到 ,获得积分10
19秒前
倾倾倾倾倾完成签到,获得积分10
21秒前
Zhou完成签到,获得积分10
22秒前
李爱国应助全若之采纳,获得10
23秒前
善学以致用应助laity采纳,获得10
26秒前
cocolu应助曹文迪采纳,获得10
26秒前
27秒前
黑石发布了新的文献求助10
28秒前
科研小白完成签到,获得积分10
28秒前
缥缈冰珍发布了新的文献求助10
32秒前
彭于彦祖应助onethree采纳,获得30
33秒前
35秒前
38秒前
hmfyl完成签到,获得积分10
39秒前
chouchou完成签到,获得积分10
39秒前
40秒前
41秒前
小小完成签到,获得积分10
41秒前
ding应助雁回采纳,获得30
42秒前
hmfyl发布了新的文献求助10
43秒前
44秒前
姜忆霜发布了新的文献求助10
44秒前
44秒前
Anchor发布了新的文献求助10
47秒前
47秒前
彭于彦祖应助QY采纳,获得30
47秒前
体贴花卷发布了新的文献求助10
49秒前
子车半烟发布了新的文献求助10
51秒前
52秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264294
求助须知:如何正确求助?哪些是违规求助? 2904394
关于积分的说明 8330149
捐赠科研通 2574616
什么是DOI,文献DOI怎么找? 1399275
科研通“疑难数据库(出版商)”最低求助积分说明 654476
邀请新用户注册赠送积分活动 633126