Knowledge-enhanced Multi-View Graph Neural Networks for Session-based Recommendation

计算机科学 成对比较 图形 会话(web分析) 人工智能 知识图 机器学习 特征(语言学) 数据挖掘 情报检索 理论计算机科学 万维网 语言学 哲学
作者
Qian Chen,Zhiqiang Guo,Jianjun Li,Guohui Li
标识
DOI:10.1145/3539618.3591706
摘要

Session-based recommendation (SBR) has received increasing attention to predict the next item via extracting and integrating both global and local item-item relationships. However, there still exist some deficiencies in current works when capturing these two kinds of relationships. For global item-item relationships, the global graph constructed by most SBR is a pseudo-global graph, which may cause redundant mining of sequence relationships. For local item-item relationships, conventional SBR only mines the sequence patterns while ignoring the feature patterns, which may introduce noise when learning users' interests. To address these problems, we propose a novel Knowledge-enhanced Multi-View Graph Neural Network (KMVG) by constructing three views, namely knowledge view, session view, and pairwise view. Specifically, benefiting from the rich semantic information in the knowledge graph (KG), we build a genuine global graph that is sequence-independent based on KG to mine the global item-item relationships in the knowledge view. Then, a session view is utilized to capture the contextual transitions among items as the sequence patterns of local item-item relationships, and a pairwise view is used to explore the feature commonality within a session as the feature patterns of the local item-item relationships. Extensive experiments on three real-world public datasets demonstrate the superiority of KMVG, showing that it outperforms the state-of-the-art baselines. Further analysis also reveals the effectiveness of KMVG in exploiting the item-item relationships under multiple views.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助牛牛眉目采纳,获得10
1秒前
栀雨味发布了新的文献求助10
2秒前
2秒前
4秒前
laallaall应助杉杉采纳,获得10
5秒前
5秒前
8秒前
8秒前
时笙发布了新的文献求助10
8秒前
9秒前
大模型应助天天采纳,获得30
10秒前
WangSiwei完成签到,获得积分10
10秒前
我是老大应助自觉紫安采纳,获得10
10秒前
11秒前
Dravia应助科研通管家采纳,获得30
11秒前
orixero应助科研通管家采纳,获得10
11秒前
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
11秒前
领导范儿应助科研通管家采纳,获得10
12秒前
华仔应助科研通管家采纳,获得10
12秒前
Owen应助科研通管家采纳,获得10
12秒前
李健应助科研通管家采纳,获得10
12秒前
12秒前
Lucas应助科研通管家采纳,获得10
12秒前
潇洒飞丹发布了新的文献求助10
13秒前
13秒前
16秒前
16秒前
qyl1023完成签到,获得积分10
16秒前
NexusExplorer应助孟繁荣采纳,获得10
16秒前
童绾绾发布了新的文献求助10
17秒前
搜集达人应助yx_cheng采纳,获得10
17秒前
19秒前
赘婿应助乐观的问兰采纳,获得10
19秒前
FANTASY发布了新的文献求助20
19秒前
余南发布了新的文献求助10
20秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956295
求助须知:如何正确求助?哪些是违规求助? 3502477
关于积分的说明 11107954
捐赠科研通 3233164
什么是DOI,文献DOI怎么找? 1787196
邀请新用户注册赠送积分活动 870506
科研通“疑难数据库(出版商)”最低求助积分说明 802105