亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Knowledge-enhanced Multi-View Graph Neural Networks for Session-based Recommendation

计算机科学 成对比较 图形 会话(web分析) 人工智能 知识图 机器学习 特征(语言学) 数据挖掘 情报检索 理论计算机科学 万维网 语言学 哲学
作者
Qian Chen,Zhiqiang Guo,Jianjun Li,Guohui Li
标识
DOI:10.1145/3539618.3591706
摘要

Session-based recommendation (SBR) has received increasing attention to predict the next item via extracting and integrating both global and local item-item relationships. However, there still exist some deficiencies in current works when capturing these two kinds of relationships. For global item-item relationships, the global graph constructed by most SBR is a pseudo-global graph, which may cause redundant mining of sequence relationships. For local item-item relationships, conventional SBR only mines the sequence patterns while ignoring the feature patterns, which may introduce noise when learning users' interests. To address these problems, we propose a novel Knowledge-enhanced Multi-View Graph Neural Network (KMVG) by constructing three views, namely knowledge view, session view, and pairwise view. Specifically, benefiting from the rich semantic information in the knowledge graph (KG), we build a genuine global graph that is sequence-independent based on KG to mine the global item-item relationships in the knowledge view. Then, a session view is utilized to capture the contextual transitions among items as the sequence patterns of local item-item relationships, and a pairwise view is used to explore the feature commonality within a session as the feature patterns of the local item-item relationships. Extensive experiments on three real-world public datasets demonstrate the superiority of KMVG, showing that it outperforms the state-of-the-art baselines. Further analysis also reveals the effectiveness of KMVG in exploiting the item-item relationships under multiple views.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时尚丹寒完成签到 ,获得积分10
2秒前
欣慰元蝶应助xushangyuan采纳,获得10
3秒前
3秒前
大力的含卉完成签到,获得积分10
7秒前
爆米花应助Solkatt采纳,获得10
8秒前
10秒前
Li发布了新的文献求助10
14秒前
云初应助天天呼的海角采纳,获得20
17秒前
正直的友容完成签到,获得积分10
18秒前
18秒前
李健应助XIA采纳,获得10
21秒前
从容芮完成签到,获得积分0
24秒前
欣慰外套完成签到 ,获得积分10
26秒前
26秒前
28秒前
dreamer完成签到 ,获得积分10
29秒前
32秒前
zxy发布了新的文献求助10
33秒前
不被定义的风完成签到,获得积分10
34秒前
35秒前
lanmi完成签到,获得积分10
40秒前
Akim应助笨笨的元风采纳,获得10
41秒前
清逸发布了新的文献求助10
41秒前
XIA发布了新的文献求助10
41秒前
六个核桃完成签到,获得积分10
41秒前
一个绝望的文盲x完成签到,获得积分10
47秒前
无花果应助zxy采纳,获得10
50秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
53秒前
zxy完成签到,获得积分20
58秒前
王火火完成签到 ,获得积分10
1分钟前
LYQ完成签到,获得积分10
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
快乐的晗发布了新的文献求助10
1分钟前
还好还好发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5548989
求助须知:如何正确求助?哪些是违规求助? 4634415
关于积分的说明 14634428
捐赠科研通 4575749
什么是DOI,文献DOI怎么找? 2509284
邀请新用户注册赠送积分活动 1485264
关于科研通互助平台的介绍 1456346