Knowledge-enhanced Multi-View Graph Neural Networks for Session-based Recommendation

计算机科学 成对比较 图形 会话(web分析) 人工智能 知识图 机器学习 特征(语言学) 数据挖掘 情报检索 理论计算机科学 万维网 语言学 哲学
作者
Qian Chen,Zhiqiang Guo,Jianjun Li,Guohui Li
标识
DOI:10.1145/3539618.3591706
摘要

Session-based recommendation (SBR) has received increasing attention to predict the next item via extracting and integrating both global and local item-item relationships. However, there still exist some deficiencies in current works when capturing these two kinds of relationships. For global item-item relationships, the global graph constructed by most SBR is a pseudo-global graph, which may cause redundant mining of sequence relationships. For local item-item relationships, conventional SBR only mines the sequence patterns while ignoring the feature patterns, which may introduce noise when learning users' interests. To address these problems, we propose a novel Knowledge-enhanced Multi-View Graph Neural Network (KMVG) by constructing three views, namely knowledge view, session view, and pairwise view. Specifically, benefiting from the rich semantic information in the knowledge graph (KG), we build a genuine global graph that is sequence-independent based on KG to mine the global item-item relationships in the knowledge view. Then, a session view is utilized to capture the contextual transitions among items as the sequence patterns of local item-item relationships, and a pairwise view is used to explore the feature commonality within a session as the feature patterns of the local item-item relationships. Extensive experiments on three real-world public datasets demonstrate the superiority of KMVG, showing that it outperforms the state-of-the-art baselines. Further analysis also reveals the effectiveness of KMVG in exploiting the item-item relationships under multiple views.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wyh完成签到,获得积分10
1秒前
lalala完成签到,获得积分10
2秒前
FCH2023完成签到,获得积分10
2秒前
66应助cuihf06采纳,获得10
2秒前
半生完成签到 ,获得积分20
3秒前
锦鲤云间月完成签到,获得积分10
3秒前
3秒前
3秒前
南宫士晋完成签到 ,获得积分10
3秒前
犹豫勇完成签到,获得积分10
4秒前
侦察兵发布了新的文献求助10
4秒前
英姑应助DK采纳,获得10
5秒前
快乐小白菜完成签到,获得积分10
5秒前
joy完成签到,获得积分10
5秒前
5秒前
5秒前
孟春纪事完成签到,获得积分10
6秒前
清爽忆山完成签到,获得积分10
6秒前
小马甲应助轻松的怜容采纳,获得10
6秒前
Grayball应助噢噢采纳,获得10
6秒前
言辞完成签到,获得积分10
6秒前
小柠檬完成签到,获得积分20
6秒前
6秒前
土豆丝完成签到 ,获得积分10
7秒前
念念完成签到,获得积分10
7秒前
乐乐应助starry采纳,获得10
7秒前
温暖冰珍完成签到 ,获得积分10
7秒前
淳之风完成签到,获得积分20
8秒前
CarterXD应助hao采纳,获得30
8秒前
科研rain完成签到 ,获得积分10
8秒前
8秒前
清爽忆山发布了新的文献求助10
9秒前
睡觉晒太阳完成签到,获得积分10
9秒前
andy完成签到,获得积分10
9秒前
9秒前
Itachi12138完成签到,获得积分10
9秒前
CipherSage应助蓝莓松饼采纳,获得10
9秒前
9秒前
团团完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672