计算机科学
成对比较
图形
会话(web分析)
人工智能
知识图
机器学习
特征(语言学)
数据挖掘
情报检索
理论计算机科学
万维网
语言学
哲学
作者
Qian Chen,Zhiqiang Guo,Jianjun Li,Guohui Li
标识
DOI:10.1145/3539618.3591706
摘要
Session-based recommendation (SBR) has received increasing attention to predict the next item via extracting and integrating both global and local item-item relationships. However, there still exist some deficiencies in current works when capturing these two kinds of relationships. For global item-item relationships, the global graph constructed by most SBR is a pseudo-global graph, which may cause redundant mining of sequence relationships. For local item-item relationships, conventional SBR only mines the sequence patterns while ignoring the feature patterns, which may introduce noise when learning users' interests. To address these problems, we propose a novel Knowledge-enhanced Multi-View Graph Neural Network (KMVG) by constructing three views, namely knowledge view, session view, and pairwise view. Specifically, benefiting from the rich semantic information in the knowledge graph (KG), we build a genuine global graph that is sequence-independent based on KG to mine the global item-item relationships in the knowledge view. Then, a session view is utilized to capture the contextual transitions among items as the sequence patterns of local item-item relationships, and a pairwise view is used to explore the feature commonality within a session as the feature patterns of the local item-item relationships. Extensive experiments on three real-world public datasets demonstrate the superiority of KMVG, showing that it outperforms the state-of-the-art baselines. Further analysis also reveals the effectiveness of KMVG in exploiting the item-item relationships under multiple views.
科研通智能强力驱动
Strongly Powered by AbleSci AI