联合分析
公制(单位)
可靠性(半导体)
工作流程
考试(生物学)
计算机科学
统计假设检验
计量经济学
心理学
统计
数学
工程类
运营管理
偏爱
功率(物理)
古生物学
物理
生物
数据库
量子力学
作者
Jens Schüler,Brian S. Anderson,Charles Y. Murnieks,Matthias Baum,Alexander Küsshauer
标识
DOI:10.1177/10422587231184071
摘要
Metric conjoint studies are a popular research design in the entrepreneurship domain. For these studies, test-retest reliabilities of ρ > .70 or higher are an often-cited reliability criterion. Despite their widespread use, however, there is little rigorous analysis of whether test-retest reliability in metric conjoint studies relates to model efficacy. Informed by a systematic literature review, we conducted two Monte Carlo simulations to evaluate the effects of various determinants of test-retest reliability in conjoint experiments. We then illustrate a workflow for entrepreneurship researchers employing conjoint designs to better evaluate—and communicate—confidence in statistical models estimated from conjoint data.
科研通智能强力驱动
Strongly Powered by AbleSci AI