Structural Regression Fusion for Unsupervised Multimodal Change Detection

计算机科学 人工智能 不可用 图像融合 模式识别(心理学) 转化(遗传学) 回归 融合 图像(数学) 融合规则 计算机视觉 数学 统计 生物化学 化学 语言学 哲学 基因
作者
Yuli Sun,Lin Lei,Li Liu,Gangyao Kuang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-18 被引量:11
标识
DOI:10.1109/tgrs.2023.3294884
摘要

Multimodal change detection (MCD) is an increasingly interesting but very challenging topic in remote sensing, which is due to the unavailability of detecting changes by directly comparing multimodal images from different domains. In this paper, we first analyze the structural asymmetry between multitemporal images and show their negative impact on the previous MCD methods using image structures. Specifically, when there is a structural asymmetry, previous structure based methods can only complete a structure comparison or image regression in one direction and fails in the other direction, that is, they cannot transform or convert from complex structural images (with more categories) to simple structural images (with fewer categories). To reduce the influence of structural asymmetry, we propose a structural regression fusion based method (SRF) that simultaneously transforms the pre-event and post-event images into the image domain of each other, calculating the forward and backward changed images, respectively. Noteworthy, different from previous late fusion methods that fuse the forward and backward changed images in the post-processing stage, SRF incorporates fusion into the regression process, which can fully explore the connection between changed images, and thus improve image transformation performance and obtain better changed images. Specifically, SRF yields three types of constraints to perform the fused image transformation: structure consistency based regression term, change smoothness and alignment based fusion term, and prior sparsity based penalty term. Finally, the changes can be extracted by comparing the transformed and original images. The proposed SRF is verified on six real data sets by comparing with some state-of-the-art methods. Source code of the proposed method will be made available at https://github.com/yulisun/SRF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观雪卉发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
酷波er应助贪玩小小采纳,获得10
3秒前
4秒前
5秒前
爱笑灵竹完成签到,获得积分10
6秒前
6秒前
zqj发布了新的文献求助10
7秒前
好好学习天天向上完成签到 ,获得积分10
8秒前
9秒前
补药啊关注了科研通微信公众号
9秒前
11秒前
nicheng发布了新的文献求助10
11秒前
11秒前
13秒前
嚯嚯发布了新的文献求助10
14秒前
桐桐应助科研通管家采纳,获得10
16秒前
16秒前
gcc应助科研通管家采纳,获得10
16秒前
成就雨筠应助科研通管家采纳,获得10
16秒前
Marcie应助科研通管家采纳,获得10
16秒前
SYLH应助科研通管家采纳,获得10
16秒前
成就雨筠应助科研通管家采纳,获得10
16秒前
银杏应助科研通管家采纳,获得10
16秒前
思源应助科研通管家采纳,获得10
16秒前
maox1aoxin应助科研通管家采纳,获得30
16秒前
SYLH应助科研通管家采纳,获得10
16秒前
丘比特应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
意签完成签到,获得积分10
17秒前
way发布了新的文献求助10
17秒前
17秒前
甜美的猕猴桃完成签到,获得积分10
18秒前
韦别完成签到,获得积分10
18秒前
20秒前
21秒前
xzh发布了新的文献求助10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3560126
求助须知:如何正确求助?哪些是违规求助? 3134333
关于积分的说明 9407006
捐赠科研通 2834465
什么是DOI,文献DOI怎么找? 1558136
邀请新用户注册赠送积分活动 727912
科研通“疑难数据库(出版商)”最低求助积分说明 716563