SCLMnet: A dual-branch guided network for lung and lung lobe segmentation

计算机科学 分割 人工智能 特征(语言学) 波瓣 模式识别(心理学) 卷积神经网络 计算机视觉 医学 病理 哲学 语言学
作者
Shuai Zhang,Hongmei Yuan,Hui Cao,Minglei Yang,Cheng Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:86: 105211-105211 被引量:2
标识
DOI:10.1016/j.bspc.2023.105211
摘要

Lung and lung lobe segmentation are two crucial techniques for lung imaging analysis that interact in clinical settings. Lung segmentation assists physicians in comparing different images to select the most appropriate surgical plan, while lobe segmentation provides precise anatomical information to help plan surgical procedures. However, inaccurate lung segmentation edges, mis-segmented lobe boundaries, and tiny targets pose challenges. Therefore, we propose a dual-branch guided convolutional neural network, SCLMnet, for lung and lung lobe segmentation. To completely leverage the semantic information of feature maps, the first branch adds a spatial linkage module (SLM) to focus on low-level features at different spatial levels, highlighting feature representations of lung edges and lung lobe boundaries. A channel linkage module (CLM) is added by matrix inner product to model channel relations, emphasizing the relevance and similarity of feature maps and capturing the interdependency of high-level feature channels to highlight feature representations of the entire lung lobe region. Transmodal synaptic linkage (TSL) and multi-scale fusion strategy guide the feature information of the CLM and SLM and the deep features extracted by the second branch ResUNet to jointly explore useful information in chest computer tomography (CT) images. To evaluate the performance of the state-of-the-art model, we use three publicly available datasets: LUNA16, COVID-19-CT-Seg, and VESSEL12. Compared to the existing methods, SCLMnet achieves average Dice scores of 92.17%, 97.80%, and 99.12%, respectively, demonstrating remarkable performance, which suggests that lung and lung lobe segmentation using CT images with SCLMnet can play an essential role in clinical research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助sw98318采纳,获得10
刚刚
wangyanwxy发布了新的文献求助10
1秒前
1秒前
搜集达人应助WTF采纳,获得10
2秒前
Ava应助陆靖易采纳,获得10
2秒前
daishuheng完成签到 ,获得积分10
3秒前
OJL完成签到 ,获得积分10
4秒前
郑思榆完成签到 ,获得积分10
4秒前
wan完成签到 ,获得积分10
5秒前
cheney完成签到,获得积分10
6秒前
周周好运完成签到,获得积分10
6秒前
温言发布了新的文献求助20
8秒前
Rahul完成签到,获得积分10
8秒前
默默的豆芽完成签到,获得积分10
8秒前
wangyanwxy完成签到,获得积分10
9秒前
flymove完成签到,获得积分10
9秒前
科研通AI5应助平淡南霜采纳,获得10
11秒前
wanci应助小小爱吃百香果采纳,获得10
11秒前
12秒前
12秒前
12秒前
14秒前
我是站长才怪应助xg采纳,获得10
14秒前
decimalpoint完成签到 ,获得积分10
16秒前
Benliu发布了新的文献求助20
16秒前
16秒前
Carol完成签到,获得积分10
16秒前
sw98318发布了新的文献求助10
17秒前
wang1090完成签到,获得积分10
17秒前
奋斗的许婷2完成签到,获得积分10
17秒前
17秒前
18秒前
hll完成签到,获得积分20
18秒前
阳yang发布了新的文献求助10
18秒前
19秒前
wang1090发布了新的文献求助30
20秒前
呜呜呜呜完成签到,获得积分10
20秒前
20秒前
Riki发布了新的文献求助10
21秒前
88发布了新的文献求助10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808