SCLMnet: A dual-branch guided network for lung and lung lobe segmentation

计算机科学 分割 人工智能 特征(语言学) 波瓣 模式识别(心理学) 卷积神经网络 计算机视觉 医学 病理 语言学 哲学
作者
Shuai Zhang,Hongmei Yuan,Hui Cao,Minglei Yang,Cheng Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:86: 105211-105211 被引量:2
标识
DOI:10.1016/j.bspc.2023.105211
摘要

Lung and lung lobe segmentation are two crucial techniques for lung imaging analysis that interact in clinical settings. Lung segmentation assists physicians in comparing different images to select the most appropriate surgical plan, while lobe segmentation provides precise anatomical information to help plan surgical procedures. However, inaccurate lung segmentation edges, mis-segmented lobe boundaries, and tiny targets pose challenges. Therefore, we propose a dual-branch guided convolutional neural network, SCLMnet, for lung and lung lobe segmentation. To completely leverage the semantic information of feature maps, the first branch adds a spatial linkage module (SLM) to focus on low-level features at different spatial levels, highlighting feature representations of lung edges and lung lobe boundaries. A channel linkage module (CLM) is added by matrix inner product to model channel relations, emphasizing the relevance and similarity of feature maps and capturing the interdependency of high-level feature channels to highlight feature representations of the entire lung lobe region. Transmodal synaptic linkage (TSL) and multi-scale fusion strategy guide the feature information of the CLM and SLM and the deep features extracted by the second branch ResUNet to jointly explore useful information in chest computer tomography (CT) images. To evaluate the performance of the state-of-the-art model, we use three publicly available datasets: LUNA16, COVID-19-CT-Seg, and VESSEL12. Compared to the existing methods, SCLMnet achieves average Dice scores of 92.17%, 97.80%, and 99.12%, respectively, demonstrating remarkable performance, which suggests that lung and lung lobe segmentation using CT images with SCLMnet can play an essential role in clinical research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
空2完成签到 ,获得积分10
1秒前
2秒前
erhan7发布了新的文献求助10
3秒前
Sunshine发布了新的文献求助10
4秒前
chemhub完成签到,获得积分10
5秒前
6秒前
7秒前
8秒前
星星发布了新的文献求助30
8秒前
9秒前
9秒前
传奇3应助lucky采纳,获得10
10秒前
zhangzhenwen1204完成签到 ,获得积分10
10秒前
开心夜云完成签到 ,获得积分10
11秒前
仁爱钢笔完成签到 ,获得积分10
11秒前
11秒前
yunidesuuu完成签到,获得积分10
11秒前
美女发布了新的文献求助10
12秒前
田様应助科研小白采纳,获得10
12秒前
研友_VZG7GZ应助yoyo采纳,获得10
13秒前
13秒前
所所应助erhan7采纳,获得10
13秒前
科研通AI2S应助草木采纳,获得10
13秒前
吴雨峰完成签到,获得积分10
14秒前
王艺霖完成签到,获得积分10
15秒前
15秒前
Stitch应助yx采纳,获得10
15秒前
15秒前
故城发布了新的文献求助10
16秒前
18秒前
18秒前
morii完成签到,获得积分10
18秒前
桐桐应助LI采纳,获得10
18秒前
陶醉苠发布了新的文献求助10
19秒前
sandra发布了新的文献求助10
21秒前
lvlei完成签到,获得积分20
22秒前
23秒前
刘欢发布了新的文献求助10
23秒前
晨霜完成签到,获得积分10
23秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140881
求助须知:如何正确求助?哪些是违规求助? 2791855
关于积分的说明 7800523
捐赠科研通 2448091
什么是DOI,文献DOI怎么找? 1302393
科研通“疑难数据库(出版商)”最低求助积分说明 626548
版权声明 601210