Candidate-aware Graph Contrastive Learning for Recommendation

计算机科学 人工智能 图形 推荐系统 机器学习 数据挖掘 模式识别(心理学) 理论计算机科学
作者
Wei He,Guohao Sun,Jinhu Lu,Xiu Susie Fang
标识
DOI:10.1145/3539618.3591647
摘要

Recently, Graph Neural Networks (GNNs) have become a mainstream recommender system method, where it captures high-order collaborative signals between nodes by performing convolution operations on the user-item interaction graph to predict user preferences for different items. However, in real scenarios, the user-item interaction graph is extremely sparse, which means numerous users only interact with a small number of items, resulting in the inability of GNN in learning high-quality node embeddings. To alleviate this problem, the Graph Contrastive Learning (GCL)-based recommender system method is proposed. GCL improves embedding quality by maximizing the similarity of the positive pair and minimizing the similarity of the negative pair. However, most GCL-based methods use heuristic data augmentation methods, i.e., random node/edge drop and attribute masking, to construct contrastive pairs, resulting in the loss of important information. To solve the problems in GCL-based methods, we propose a novel method, Candidate-aware Graph Contrastive Learning for Recommendation, called CGCL. In CGCL, we explore the relationship between the user and the candidate item in the embedding at different layers and use similar semantic embeddings to construct contrastive pairs. By our proposed CGCL, we construct structural neighbor contrastive learning objects, candidate contrastive learning objects, and candidate structural neighbor contrastive learning objects to obtain high-quality node embeddings. To validate the proposed model, we conducted extensive experiments on three publicly available datasets. Compared with various state-of-the-art DNN-, GNN- and GCL-based methods, our proposed CGCL achieved significant improvements in all indicators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SICHEN应助柴六斤采纳,获得10
刚刚
手拿把掐完成签到,获得积分10
1秒前
放放发布了新的文献求助10
1秒前
1秒前
善学以致用应助gzsy采纳,获得10
4秒前
Orange应助憨憨的小于采纳,获得10
4秒前
Ava应助meena采纳,获得10
4秒前
5秒前
科研通AI5应助虚心念桃采纳,获得30
5秒前
枫叶应助guoguo采纳,获得10
6秒前
金色闪光完成签到 ,获得积分10
6秒前
英姑应助豆豆采纳,获得10
7秒前
爆米花应助ximitona采纳,获得10
7秒前
在水一方应助sungyoo采纳,获得10
7秒前
8秒前
zzzz发布了新的文献求助10
8秒前
粗心的胜发布了新的文献求助10
9秒前
如果完成签到,获得积分10
9秒前
11秒前
有魅力山河完成签到,获得积分20
11秒前
12秒前
12秒前
二月水火完成签到,获得积分10
12秒前
感性的安露举报合适忆南求助涉嫌违规
12秒前
花盛完成签到,获得积分10
13秒前
琉璃色孔雀完成签到,获得积分20
14秒前
领导范儿应助Echo采纳,获得10
14秒前
顾矜应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
酷波er应助科研通管家采纳,获得10
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
星辰大海应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
大模型应助科研通管家采纳,获得10
17秒前
JamesPei应助科研通管家采纳,获得10
17秒前
今后应助科研通管家采纳,获得10
17秒前
菠萝炒饭应助科研通管家采纳,获得10
17秒前
刘荻萩应助科研通管家采纳,获得20
17秒前
自由茈应助科研通管家采纳,获得10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3668230
求助须知:如何正确求助?哪些是违规求助? 3226593
关于积分的说明 9770416
捐赠科研通 2936503
什么是DOI,文献DOI怎么找? 1608642
邀请新用户注册赠送积分活动 759754
科研通“疑难数据库(出版商)”最低求助积分说明 735537