Distributed Knowledge Transfer for Evolutionary Multitask Multimodal Optimization

计算机科学 人类多任务处理 模式 水准点(测量) 多任务学习 人工智能 任务(项目管理) 机器学习 最优化问题 学习迁移 匹配(统计) 进化算法 相似性(几何) 人口 进化计算 集合(抽象数据类型) 模态(人机交互) 数学 算法 心理学 社会科学 统计 人口学 管理 大地测量学 社会学 程序设计语言 经济 图像(数学) 认知心理学 地理
作者
Kailai Gao,Cuie Yang,Jinliang Ding,Kay Chen Tan,Tianyou Chai
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 1141-1155 被引量:3
标识
DOI:10.1109/tevc.2023.3291874
摘要

Evolutionary multitasking Optimization (EMTO) is a paradigm that optimizes multiple tasks simultaneously to improve the overall performance of all tasks by seamlessly transferring useful knowledge among them. Although EMTO has received significant interest, rare studies consider handling tasks that are multimodal optimization problems (MMOPs) with multiple global optimal solutions. Due to the multiple different modalities of each task, a major challenge of solving multiple MMOPs is how to extract and transfer knowledge across modalities of different tasks. To this end, this paper designs a distributed knowledge transfer based evolutionary multitask multimodal optimization (EMTMO-DKT) approach for solving multiple MMOPs simultaneously by discovering and utilizing local knowledge across modalities of different tasks. Specifically, we first divide the population of each task into multiple subpopulations, where each subpopulation explores a modality. Then, we propose an evolution path based similarity measurement to measure the local similarities between subpopulations of different tasks. Since the modalities can be locally similar across tasks, we develop a subpopulation cross matching strategy according to the obtained similarities to pair subpopulations of different tasks. In this stage, the successfully paired subpopulations are allowed to transfer knowledge. Finally, the knowledge transfer probability self-adjusting strategy is applied to each subpopulation to balance knowledge transfer and self-evolution, so as to improve search efficiency. In this paper, a set of multitask multimodal optimization test problems are constructed to assess the efficacy of compared algorithms. Experimental results on both the benchmark functions and the real-world optimization problem demonstrate that the proposed algorithm can quickly locate more global optima in comparison with state-of-the-art EMTO and multimodal optimization algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昂口3完成签到 ,获得积分10
1秒前
格物致知完成签到,获得积分10
2秒前
小朱朱完成签到,获得积分10
4秒前
Tricia应助林业光魔采纳,获得10
4秒前
4秒前
4秒前
5秒前
科盲TCB完成签到,获得积分10
5秒前
7秒前
张琳琳发布了新的文献求助10
7秒前
8秒前
Luohsheue完成签到,获得积分10
9秒前
CAOHOU应助乐尤琉采纳,获得10
11秒前
11秒前
清新的寄翠完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
lewis17发布了新的文献求助10
14秒前
可爱的函函应助张琳琳采纳,获得10
16秒前
勤恳的浩阑完成签到,获得积分10
18秒前
Lucas应助liuzf采纳,获得10
20秒前
小瓢虫完成签到,获得积分10
22秒前
FOB应助科研通管家采纳,获得10
24秒前
Ava应助科研通管家采纳,获得10
24秒前
SciGPT应助科研通管家采纳,获得10
24秒前
赘婿应助科研通管家采纳,获得30
24秒前
棋士应助科研通管家采纳,获得10
24秒前
FOB应助科研通管家采纳,获得10
25秒前
李健应助科研通管家采纳,获得10
25秒前
25秒前
科研通AI2S应助啃猫爪采纳,获得10
25秒前
斯文傲芙完成签到,获得积分10
25秒前
巧克力餐包完成签到,获得积分10
26秒前
所所应助慕乾采纳,获得10
28秒前
英姑应助lewis17采纳,获得10
29秒前
科研皇完成签到,获得积分10
29秒前
Lin.隽发布了新的文献求助10
30秒前
30秒前
32秒前
275231完成签到,获得积分10
32秒前
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954395
求助须知:如何正确求助?哪些是违规求助? 3500338
关于积分的说明 11099177
捐赠科研通 3230855
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801673