Distributed Knowledge Transfer for Evolutionary Multitask Multimodal Optimization

计算机科学 人类多任务处理 模式 水准点(测量) 多任务学习 人工智能 任务(项目管理) 机器学习 最优化问题 学习迁移 匹配(统计) 进化算法 相似性(几何) 人口 进化计算 集合(抽象数据类型) 模态(人机交互) 数学 算法 心理学 社会科学 统计 人口学 管理 大地测量学 社会学 程序设计语言 经济 图像(数学) 认知心理学 地理
作者
Kailai Gao,Cuie Yang,Jinliang Ding,Kay Chen Tan,Tianyou Chai
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 1141-1155 被引量:3
标识
DOI:10.1109/tevc.2023.3291874
摘要

Evolutionary multitasking Optimization (EMTO) is a paradigm that optimizes multiple tasks simultaneously to improve the overall performance of all tasks by seamlessly transferring useful knowledge among them. Although EMTO has received significant interest, rare studies consider handling tasks that are multimodal optimization problems (MMOPs) with multiple global optimal solutions. Due to the multiple different modalities of each task, a major challenge of solving multiple MMOPs is how to extract and transfer knowledge across modalities of different tasks. To this end, this paper designs a distributed knowledge transfer based evolutionary multitask multimodal optimization (EMTMO-DKT) approach for solving multiple MMOPs simultaneously by discovering and utilizing local knowledge across modalities of different tasks. Specifically, we first divide the population of each task into multiple subpopulations, where each subpopulation explores a modality. Then, we propose an evolution path based similarity measurement to measure the local similarities between subpopulations of different tasks. Since the modalities can be locally similar across tasks, we develop a subpopulation cross matching strategy according to the obtained similarities to pair subpopulations of different tasks. In this stage, the successfully paired subpopulations are allowed to transfer knowledge. Finally, the knowledge transfer probability self-adjusting strategy is applied to each subpopulation to balance knowledge transfer and self-evolution, so as to improve search efficiency. In this paper, a set of multitask multimodal optimization test problems are constructed to assess the efficacy of compared algorithms. Experimental results on both the benchmark functions and the real-world optimization problem demonstrate that the proposed algorithm can quickly locate more global optima in comparison with state-of-the-art EMTO and multimodal optimization algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lion完成签到,获得积分10
刚刚
刚刚
wanci应助111采纳,获得20
1秒前
1秒前
zzsl发布了新的文献求助10
1秒前
1秒前
小恐龙完成签到,获得积分10
1秒前
2秒前
吃个包子发布了新的文献求助10
3秒前
小王完成签到 ,获得积分10
3秒前
搜集达人应助vicki采纳,获得10
5秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
华海亦发布了新的文献求助30
8秒前
9秒前
9秒前
天天快乐应助小翼采纳,获得10
9秒前
10秒前
10秒前
10秒前
米斯塔林完成签到,获得积分10
11秒前
12秒前
充电宝应助寒冷河马采纳,获得10
12秒前
酷波er应助简单平松采纳,获得10
12秒前
赵保钢完成签到,获得积分10
12秒前
13秒前
NexusExplorer应助结实的若魔采纳,获得10
14秒前
14秒前
呱呱完成签到 ,获得积分10
15秒前
英吉利25发布了新的文献求助10
15秒前
yqt发布了新的文献求助10
15秒前
ding应助棋子烧饼啊采纳,获得10
16秒前
17秒前
静心404发布了新的文献求助10
17秒前
吃个包子完成签到,获得积分10
17秒前
yzy完成签到,获得积分10
17秒前
18秒前
18秒前
due发布了新的文献求助10
18秒前
天天发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5420180
求助须知:如何正确求助?哪些是违规求助? 4535297
关于积分的说明 14149461
捐赠科研通 4452280
什么是DOI,文献DOI怎么找? 2442103
邀请新用户注册赠送积分活动 1433615
关于科研通互助平台的介绍 1410869