已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Causality-Aware Graph Convolutional Network Framework for Rigidity Assessment in Parkinsonians

因果关系(物理学) 计算机科学 图形 人工智能 刚度(电磁) 理论计算机科学 计算机视觉 自然语言处理 工程类 结构工程 物理 量子力学
作者
Xinlu Tang,Chencheng Zhang,Rui Guo,Xinling Yang,Xiaohua Qian
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 229-240 被引量:9
标识
DOI:10.1109/tmi.2023.3294182
摘要

Rigidity is one of the common motor disorders in Parkinson's disease (PD), which lead to life quality deterioration. The widely-used rating-scale-based approach for rigidity assessment still depends on the availability of experienced neurologists and is limited by rating subjectivity. Given the recent successful applications of quantitative susceptibility mapping (QSM) in auxiliary PD diagnosis, automated assessment of PD rigidity can be essentially achieved through QSM analysis. However, a major challenge is the performance instability due to the confounding factors (e.g., noise and distribution shift) which conceal the truly-causal features. Therefore, we propose a causality-aware graph convolutional network (GCN) framework, where causal feature selection is combined with causal invariance to ensure that causality-informed model decisions are reached. Firstly, a GCN model that integrates causal feature selection is systematically constructed at three graph levels: node, structure, and representation. In this model, a causal diagram is learned to extract a subgraph with truly-causal information. Secondly, a non-causal perturbation strategy is developed along with an invariance constraint to ensure the stability of the assessment results under different distributions, and thus avoid spurious correlations caused by distribution shifts. The superiority of the proposed method is shown by extensive experiments and the clinical value is revealed by the direct relevance of selected brain regions to rigidity in PD. Besides, its extensibility is verified on other two tasks: PD bradykinesia and mental state for Alzheimer's disease. Overall, we provide a clinically-potential tool for automated and stable assessment of PD rigidity. Our source code will be available at https://github.com/SJTUBME-QianLab/Causality-Aware-Rigidity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhhhhhh完成签到,获得积分20
1秒前
3秒前
huangshoukun发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
9秒前
俊逸的念寒完成签到,获得积分10
9秒前
原子格致完成签到,获得积分10
11秒前
12秒前
斯文败类应助Cindy采纳,获得10
15秒前
kali完成签到 ,获得积分10
17秒前
Pan发布了新的文献求助10
17秒前
17秒前
17秒前
18秒前
18秒前
CipherSage应助Jnscal采纳,获得10
21秒前
我是老大应助苻谷丝采纳,获得10
21秒前
22秒前
24秒前
隐形曼青应助工诩采纳,获得10
24秒前
xuexin完成签到,获得积分20
24秒前
美满的中蓝完成签到,获得积分10
25秒前
25秒前
科研通AI2S应助Fishchips采纳,获得10
26秒前
Pengh完成签到,获得积分10
26秒前
苯二氮卓发布了新的文献求助10
27秒前
栗惠发布了新的文献求助10
29秒前
xuexin发布了新的文献求助10
30秒前
华仔应助王王采纳,获得10
31秒前
Miriammmmm发布了新的文献求助30
32秒前
33秒前
34秒前
35秒前
Hoolyshit发布了新的文献求助10
35秒前
英姑应助Arilus采纳,获得10
35秒前
38秒前
儒雅香彤完成签到 ,获得积分10
38秒前
无花果应助ddddd11采纳,获得10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407380
求助须知:如何正确求助?哪些是违规求助? 4524989
关于积分的说明 14100518
捐赠科研通 4438717
什么是DOI,文献DOI怎么找? 2436477
邀请新用户注册赠送积分活动 1428447
关于科研通互助平台的介绍 1406479