A Causality-Aware Graph Convolutional Network Framework for Rigidity Assessment in Parkinsonians

因果关系(物理学) 计算机科学 图形 人工智能 刚度(电磁) 理论计算机科学 计算机视觉 自然语言处理 工程类 结构工程 物理 量子力学
作者
Xinlu Tang,Chencheng Zhang,Rui Guo,Xinling Yang,Xiaohua Qian
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 229-240 被引量:4
标识
DOI:10.1109/tmi.2023.3294182
摘要

Rigidity is one of the common motor disorders in Parkinson's disease (PD), which lead to life quality deterioration. The widely-used rating-scale-based approach for rigidity assessment still depends on the availability of experienced neurologists and is limited by rating subjectivity. Given the recent successful applications of quantitative susceptibility mapping (QSM) in auxiliary PD diagnosis, automated assessment of PD rigidity can be essentially achieved through QSM analysis. However, a major challenge is the performance instability due to the confounding factors (e.g., noise and distribution shift) which conceal the truly-causal features. Therefore, we propose a causality-aware graph convolutional network (GCN) framework, where causal feature selection is combined with causal invariance to ensure that causality-informed model decisions are reached. Firstly, a GCN model that integrates causal feature selection is systematically constructed at three graph levels: node, structure, and representation. In this model, a causal diagram is learned to extract a subgraph with truly-causal information. Secondly, a non-causal perturbation strategy is developed along with an invariance constraint to ensure the stability of the assessment results under different distributions, and thus avoid spurious correlations caused by distribution shifts. The superiority of the proposed method is shown by extensive experiments and the clinical value is revealed by the direct relevance of selected brain regions to rigidity in PD. Besides, its extensibility is verified on other two tasks: PD bradykinesia and mental state for Alzheimer's disease. Overall, we provide a clinically-potential tool for automated and stable assessment of PD rigidity. Our source code will be available at https://github.com/SJTUBME-QianLab/Causality-Aware-Rigidity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乖猫要努力应助清明采纳,获得10
刚刚
渡鸦sliver完成签到,获得积分10
刚刚
llll完成签到,获得积分10
2秒前
瑞_完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
elgar612发布了新的文献求助30
3秒前
4秒前
笠柚完成签到,获得积分10
4秒前
润物无声完成签到,获得积分10
4秒前
5秒前
JamesPei应助叮咚采纳,获得10
5秒前
hdbys发布了新的文献求助10
6秒前
6秒前
月亮门儿发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
7秒前
刚得力完成签到,获得积分10
7秒前
传奇3应助milan001采纳,获得10
8秒前
饭粒完成签到,获得积分10
8秒前
8秒前
正直千兰完成签到,获得积分10
9秒前
付创发布了新的文献求助10
9秒前
9秒前
pluto应助n5421采纳,获得10
10秒前
daodao发布了新的文献求助10
10秒前
zho发布了新的文献求助10
10秒前
小耗子发布了新的文献求助10
11秒前
zhaiyi发布了新的文献求助10
11秒前
qqwrv发布了新的文献求助10
12秒前
aaiirrii发布了新的文献求助30
12秒前
ALICE渡完成签到,获得积分10
13秒前
沙枣花墙子完成签到,获得积分10
13秒前
awedfa发布了新的文献求助30
13秒前
13秒前
14秒前
sc完成签到,获得积分10
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960905
求助须知:如何正确求助?哪些是违规求助? 3507164
关于积分的说明 11134060
捐赠科研通 3239538
什么是DOI,文献DOI怎么找? 1790202
邀请新用户注册赠送积分活动 872199
科研通“疑难数据库(出版商)”最低求助积分说明 803149