已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Causality-Aware Graph Convolutional Network Framework for Rigidity Assessment in Parkinsonians

因果关系(物理学) 计算机科学 图形 人工智能 刚度(电磁) 理论计算机科学 计算机视觉 自然语言处理 量子力学 结构工程 物理 工程类
作者
Xinlu Tang,Chencheng Zhang,Rui Guo,Xinling Yang,Xiaohua Qian
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 229-240 被引量:9
标识
DOI:10.1109/tmi.2023.3294182
摘要

Rigidity is one of the common motor disorders in Parkinson's disease (PD), which lead to life quality deterioration. The widely-used rating-scale-based approach for rigidity assessment still depends on the availability of experienced neurologists and is limited by rating subjectivity. Given the recent successful applications of quantitative susceptibility mapping (QSM) in auxiliary PD diagnosis, automated assessment of PD rigidity can be essentially achieved through QSM analysis. However, a major challenge is the performance instability due to the confounding factors (e.g., noise and distribution shift) which conceal the truly-causal features. Therefore, we propose a causality-aware graph convolutional network (GCN) framework, where causal feature selection is combined with causal invariance to ensure that causality-informed model decisions are reached. Firstly, a GCN model that integrates causal feature selection is systematically constructed at three graph levels: node, structure, and representation. In this model, a causal diagram is learned to extract a subgraph with truly-causal information. Secondly, a non-causal perturbation strategy is developed along with an invariance constraint to ensure the stability of the assessment results under different distributions, and thus avoid spurious correlations caused by distribution shifts. The superiority of the proposed method is shown by extensive experiments and the clinical value is revealed by the direct relevance of selected brain regions to rigidity in PD. Besides, its extensibility is verified on other two tasks: PD bradykinesia and mental state for Alzheimer's disease. Overall, we provide a clinically-potential tool for automated and stable assessment of PD rigidity. Our source code will be available at https://github.com/SJTUBME-QianLab/Causality-Aware-Rigidity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
后山种仙草完成签到,获得积分10
1秒前
1秒前
怡然的冰露完成签到,获得积分10
2秒前
zzz完成签到,获得积分10
2秒前
谢谢谢发布了新的文献求助10
2秒前
4秒前
4秒前
鲤鱼初柳完成签到 ,获得积分10
5秒前
Delight完成签到 ,获得积分0
8秒前
科研通AI6应助怡然的冰露采纳,获得30
8秒前
衾空发布了新的文献求助10
9秒前
WW完成签到,获得积分20
10秒前
CodeCraft应助木子采纳,获得10
11秒前
11秒前
852应助John采纳,获得10
12秒前
13秒前
14秒前
我是老大应助Breeze采纳,获得10
15秒前
科目三应助优美紫槐采纳,获得10
15秒前
Hello应助hbWang采纳,获得10
16秒前
yaoli0823发布了新的文献求助30
16秒前
16秒前
16秒前
17秒前
17秒前
DDDSK发布了新的文献求助30
18秒前
18秒前
科研通AI6应助科研小魏采纳,获得10
20秒前
John完成签到,获得积分10
20秒前
20秒前
Lee发布了新的文献求助10
21秒前
22秒前
木子发布了新的文献求助10
22秒前
左手写情发布了新的文献求助30
23秒前
ceeray23应助科研通管家采纳,获得10
23秒前
华仔应助科研通管家采纳,获得10
23秒前
CipherSage应助科研通管家采纳,获得10
23秒前
Mic应助科研通管家采纳,获得10
23秒前
enjoy发布了新的文献求助10
23秒前
852应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650215
求助须知:如何正确求助?哪些是违规求助? 4780069
关于积分的说明 15051513
捐赠科研通 4809083
什么是DOI,文献DOI怎么找? 2572018
邀请新用户注册赠送积分活动 1528258
关于科研通互助平台的介绍 1487075