A Causality-Aware Graph Convolutional Network Framework for Rigidity Assessment in Parkinsonians

因果关系(物理学) 计算机科学 图形 人工智能 刚度(电磁) 理论计算机科学 计算机视觉 自然语言处理 量子力学 结构工程 物理 工程类
作者
Xinlu Tang,Chencheng Zhang,Rui Guo,Xinling Yang,Xiaohua Qian
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 229-240 被引量:4
标识
DOI:10.1109/tmi.2023.3294182
摘要

Rigidity is one of the common motor disorders in Parkinson's disease (PD), which lead to life quality deterioration. The widely-used rating-scale-based approach for rigidity assessment still depends on the availability of experienced neurologists and is limited by rating subjectivity. Given the recent successful applications of quantitative susceptibility mapping (QSM) in auxiliary PD diagnosis, automated assessment of PD rigidity can be essentially achieved through QSM analysis. However, a major challenge is the performance instability due to the confounding factors (e.g., noise and distribution shift) which conceal the truly-causal features. Therefore, we propose a causality-aware graph convolutional network (GCN) framework, where causal feature selection is combined with causal invariance to ensure that causality-informed model decisions are reached. Firstly, a GCN model that integrates causal feature selection is systematically constructed at three graph levels: node, structure, and representation. In this model, a causal diagram is learned to extract a subgraph with truly-causal information. Secondly, a non-causal perturbation strategy is developed along with an invariance constraint to ensure the stability of the assessment results under different distributions, and thus avoid spurious correlations caused by distribution shifts. The superiority of the proposed method is shown by extensive experiments and the clinical value is revealed by the direct relevance of selected brain regions to rigidity in PD. Besides, its extensibility is verified on other two tasks: PD bradykinesia and mental state for Alzheimer's disease. Overall, we provide a clinically-potential tool for automated and stable assessment of PD rigidity. Our source code will be available at https://github.com/SJTUBME-QianLab/Causality-Aware-Rigidity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lilivite完成签到,获得积分0
1秒前
美海与鱼完成签到,获得积分10
1秒前
SciGPT应助酷炫的毛巾采纳,获得10
1秒前
2秒前
DTiverson发布了新的文献求助10
3秒前
3秒前
zlt发布了新的文献求助10
3秒前
感性的大炮完成签到,获得积分10
4秒前
云云完成签到,获得积分10
4秒前
peng发布了新的文献求助10
5秒前
bkagyin应助万幸鹿采纳,获得10
5秒前
华仔应助sxc110采纳,获得10
5秒前
wangyu发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
8秒前
8秒前
9秒前
koi发布了新的文献求助10
9秒前
Akim应助li采纳,获得10
10秒前
彭于彦祖给MMM的求助进行了留言
11秒前
zzz完成签到 ,获得积分10
11秒前
搜集达人应助稳定上分采纳,获得30
11秒前
GAO发布了新的文献求助10
12秒前
科研通AI2S应助绿水菊采纳,获得10
12秒前
12秒前
zxf完成签到,获得积分20
12秒前
Cker发布了新的文献求助10
13秒前
strive发布了新的文献求助10
13秒前
小付发布了新的文献求助10
13秒前
科研r发布了新的文献求助10
14秒前
14秒前
李健的小迷弟应助Leung采纳,获得10
15秒前
万幸鹿发布了新的文献求助10
15秒前
大模型应助peng采纳,获得10
16秒前
16秒前
17秒前
学术羊完成签到,获得积分10
18秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3263069
求助须知:如何正确求助?哪些是违规求助? 2903744
关于积分的说明 8326639
捐赠科研通 2573710
什么是DOI,文献DOI怎么找? 1398451
科研通“疑难数据库(出版商)”最低求助积分说明 654203
邀请新用户注册赠送积分活动 632739