亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Causality-Aware Graph Convolutional Network Framework for Rigidity Assessment in Parkinsonians

因果关系(物理学) 计算机科学 图形 人工智能 刚度(电磁) 理论计算机科学 计算机视觉 自然语言处理 量子力学 结构工程 物理 工程类
作者
Xinlu Tang,Chencheng Zhang,Rui Guo,Xinling Yang,Xiaohua Qian
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 229-240 被引量:9
标识
DOI:10.1109/tmi.2023.3294182
摘要

Rigidity is one of the common motor disorders in Parkinson's disease (PD), which lead to life quality deterioration. The widely-used rating-scale-based approach for rigidity assessment still depends on the availability of experienced neurologists and is limited by rating subjectivity. Given the recent successful applications of quantitative susceptibility mapping (QSM) in auxiliary PD diagnosis, automated assessment of PD rigidity can be essentially achieved through QSM analysis. However, a major challenge is the performance instability due to the confounding factors (e.g., noise and distribution shift) which conceal the truly-causal features. Therefore, we propose a causality-aware graph convolutional network (GCN) framework, where causal feature selection is combined with causal invariance to ensure that causality-informed model decisions are reached. Firstly, a GCN model that integrates causal feature selection is systematically constructed at three graph levels: node, structure, and representation. In this model, a causal diagram is learned to extract a subgraph with truly-causal information. Secondly, a non-causal perturbation strategy is developed along with an invariance constraint to ensure the stability of the assessment results under different distributions, and thus avoid spurious correlations caused by distribution shifts. The superiority of the proposed method is shown by extensive experiments and the clinical value is revealed by the direct relevance of selected brain regions to rigidity in PD. Besides, its extensibility is verified on other two tasks: PD bradykinesia and mental state for Alzheimer's disease. Overall, we provide a clinically-potential tool for automated and stable assessment of PD rigidity. Our source code will be available at https://github.com/SJTUBME-QianLab/Causality-Aware-Rigidity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
27秒前
yixuanshi发布了新的文献求助10
32秒前
斯文败类应助海绵宝宝采纳,获得10
43秒前
59秒前
年年有余完成签到,获得积分10
1分钟前
110ne完成签到,获得积分10
1分钟前
种下梧桐树完成签到 ,获得积分10
1分钟前
共享精神应助单纯的白萱采纳,获得10
1分钟前
1分钟前
1分钟前
啊z发布了新的文献求助10
1分钟前
朴素的山蝶完成签到 ,获得积分10
1分钟前
1分钟前
个性半烟完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
科研通AI6应助单纯的白萱采纳,获得10
2分钟前
冷酷哈密瓜完成签到,获得积分10
2分钟前
年年年年完成签到,获得积分10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
CodeCraft应助科研通管家采纳,获得10
2分钟前
2分钟前
优雅的帅哥完成签到 ,获得积分10
2分钟前
caca完成签到,获得积分0
2分钟前
3分钟前
3分钟前
JamesPei应助老孟采纳,获得10
3分钟前
f1sh发布了新的文献求助10
3分钟前
3分钟前
3分钟前
老孟发布了新的文献求助10
3分钟前
f1sh完成签到,获得积分10
3分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
Akim应助科研通管家采纳,获得10
4分钟前
zcw完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671123
求助须知:如何正确求助?哪些是违规求助? 4910449
关于积分的说明 15134026
捐赠科研通 4829857
什么是DOI,文献DOI怎么找? 2586509
邀请新用户注册赠送积分活动 1540137
关于科研通互助平台的介绍 1498348