Multiobjective Ensemble Learning With Multiscale Data for Product Quality Prediction in Iron and Steel Industry

计算机科学 人工智能 稳健性(进化) 卷积神经网络 机器学习 集成学习 初始化 集合预报 人工神经网络 数据建模 联营 数据挖掘 生物化学 化学 数据库 基因 程序设计语言
作者
Xianpeng Wang,Yao Wang,Lixin Tang,Qingfu Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 1099-1113 被引量:12
标识
DOI:10.1109/tevc.2023.3290172
摘要

High quality product quality prediction is very important for iron and steel enterprises to ensure stable production. However, most existing prediction methods are manually designed learning models. These methods consider only macroscopic data while ignoring mesoscopic data that also have a significant impact on product quality. Thus, they are often poor at accuracy and generalization performance in practice. To address this issue, a multi-objective convolutional neural networks ensemble learning method with multi-scale data fusion (MOCNNEL-MSDF) is developed. Using data fusion of macro/meso data derived from kinetic models, MOCNNEL-MSDF first evolves a swarm of convolutional neural networks (CNNs) by knowledge-transferring based reproduction and adaptive weights initialization adjustment to improve learning performance, and then a sparse ensemble approach based on differential evolution is applied to achieve the final prediction model from the evolved CNNs. Experimental results on both benchmark data and practical data of continuous annealing show that MOCNNEL-MSDF achieves competitive or better accuracy and robustness compared with other powerful learning methods, and outperforms the existing strip quality prediction models. The proposed method can be used in the product quality modeling of each process in the iron and steel industry, where it is desirable to combine mechanism models with production process data to construct a product quality prediction model with higher accuracy and generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助Tira采纳,获得10
刚刚
lqq的一家之主完成签到,获得积分10
1秒前
陈陈完成签到 ,获得积分10
1秒前
么系么系完成签到,获得积分10
1秒前
2秒前
坤坤完成签到,获得积分10
2秒前
东风第一枝完成签到,获得积分20
2秒前
欢欢发布了新的文献求助10
2秒前
Jasper应助易安采纳,获得10
4秒前
4秒前
一一发布了新的文献求助10
4秒前
5秒前
Muller完成签到,获得积分10
5秒前
经法发布了新的文献求助10
6秒前
谦让的忘幽完成签到,获得积分20
6秒前
和谐小南完成签到,获得积分10
6秒前
小jiojio的猪完成签到,获得积分10
6秒前
小匹夫完成签到,获得积分10
7秒前
赤墨完成签到,获得积分10
7秒前
7秒前
8秒前
狮子沟核聚变骡子完成签到 ,获得积分10
8秒前
8秒前
传奇3应助乔治韦斯莱采纳,获得30
8秒前
8秒前
9秒前
于某人完成签到,获得积分10
9秒前
小陈要发SCI完成签到 ,获得积分10
9秒前
cdercder应助尹天扬采纳,获得20
9秒前
称心铭完成签到 ,获得积分10
10秒前
cjh258819完成签到,获得积分10
11秒前
11秒前
xl完成签到 ,获得积分10
12秒前
12秒前
12秒前
liu完成签到 ,获得积分10
12秒前
12秒前
wdlc完成签到,获得积分10
12秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678