各向异性
粒度
人工神经网络
统计物理学
扭矩
灵活性(工程)
相(物质)
分子
化学物理
航程(航空)
分子动力学
Atom(片上系统)
材料科学
物理
计算机科学
生物系统
化学
人工智能
计算化学
量子力学
数学
复合材料
嵌入式系统
操作系统
统计
生物
作者
Marltan O Wilson,David M. Huang
摘要
We develop a machine-learning method for coarse-graining condensed-phase molecular systems using anisotropic particles. The method extends currently available high-dimensional neural network potentials by addressing molecular anisotropy. We demonstrate the flexibility of the method by parametrizing single-site coarse-grained models of a rigid small molecule (benzene) and a semi-flexible organic semiconductor (sexithiophene), attaining structural accuracy close to the all-atom models for both molecules at a considerably lower computational expense. The machine-learning method of constructing the coarse-grained potential is shown to be straightforward and sufficiently robust to capture anisotropic interactions and many-body effects. The method is validated through its ability to reproduce the structural properties of the small molecule’s liquid phase and the phase transitions of the semi-flexible molecule over a wide temperature range.
科研通智能强力驱动
Strongly Powered by AbleSci AI