已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Bayesian Adaptive Umbrella Trial Design with Robust Information Borrowing for Screening Multiple Combination Therapies

贝叶斯概率 I类和II类错误 同质性(统计学) 计算机科学 适应性设计 中期分析 计量经济学 临床试验 医学 统计 机器学习 数学 人工智能 内科学
作者
Qing Liu,Wenxi Yu,Leiwen Gao,Xun Jiang,Michael Wolf,May Mo
出处
期刊:Statistics in Biopharmaceutical Research [Informa]
卷期号:16 (2): 171-181
标识
DOI:10.1080/19466315.2023.2215735
摘要

AbstractAbstractIn immuno-oncology, developing combination therapies to overcome resistance to single agent or induce synergistic effects has become a new focus. To accelerate the screening process to identify promising combinations based on objective response rates, we propose a Bayesian adaptive Umbrella Trial design to simultaneously evaluate combinations of an investigational compound with different backbones, where information borrowing across combinations is allowed to increase trial efficiency. A robust borrowing approach is developed to strike a balance between borrowing and not borrowing by accounting for different configurations of homogeneity of treatment effects using Bayesian model averaging. Unlike existing methods that use the response rates to measure the degree of homogeneity by assuming all arms share a common control rate, an advantage of our approach is that it uses relative treatment effects to determine the degree of homogeneity by adjusting for different control effects across combinations. In the proposed design, Bayesian adaptive interim analyses are implemented to drop futile combinations and graduate early efficacious combinations. Simulation studies demonstrate that the proposed design with robust information borrowing outperforms some existing approaches. It improves power when treatment effects are homogeneous and maintains reasonable arm-wise Type I error rates when heterogeneity is present across combinations. Supplementary materials for this article are available online.KEYWORDS: Adaptive information borrowingBayesian adaptive designBayesian model averagingCombination therapiesUmbrella trial AcknowledgmentsThe authors appreciated the thoughtful reviews from the Referees and Editor. The comments and suggestions have led to substantial improvements of this paper.Supplementary MaterialsAdditional tables of the simulation results and the source R code are provided in the Supplementary Material.Additional informationFundingThe author(s) reported there is no funding associated with the work featured in this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助U87采纳,获得30
1秒前
短巷完成签到 ,获得积分10
6秒前
牛哥发布了新的文献求助10
8秒前
9秒前
12秒前
猜不猜不完成签到 ,获得积分10
12秒前
菜芽君完成签到,获得积分10
12秒前
杜飞发布了新的文献求助10
12秒前
文静的可仁完成签到,获得积分10
13秒前
fff完成签到 ,获得积分10
13秒前
我吃小饼干完成签到 ,获得积分10
15秒前
17秒前
grace完成签到 ,获得积分10
17秒前
zcm1999完成签到,获得积分10
17秒前
hauru完成签到,获得积分10
21秒前
李爱国应助香菜包采纳,获得10
21秒前
momo完成签到,获得积分10
27秒前
THEO完成签到,获得积分10
27秒前
Unlisted完成签到,获得积分10
29秒前
Cope完成签到 ,获得积分10
30秒前
30秒前
小白完成签到,获得积分10
31秒前
魔幻以菱完成签到 ,获得积分10
32秒前
xxx发布了新的文献求助10
35秒前
蛙蛙应助U87采纳,获得30
35秒前
加菲丰丰完成签到,获得积分0
36秒前
曾予嘉完成签到 ,获得积分10
39秒前
揽月完成签到,获得积分10
42秒前
小袁冲冲冲完成签到,获得积分10
43秒前
小二郎应助陶醉紫菜采纳,获得10
43秒前
gura完成签到 ,获得积分10
44秒前
21完成签到 ,获得积分10
45秒前
45秒前
桐桐应助曾予嘉采纳,获得10
46秒前
xiaohan,JIA完成签到,获得积分10
49秒前
充电宝应助杜飞采纳,获得10
52秒前
52秒前
bigan完成签到,获得积分20
53秒前
顾子墨发布了新的文献求助10
58秒前
菲1208完成签到,获得积分10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356235
求助须知:如何正确求助?哪些是违规求助? 4488073
关于积分的说明 13971611
捐赠科研通 4388906
什么是DOI,文献DOI怎么找? 2411290
邀请新用户注册赠送积分活动 1403833
关于科研通互助平台的介绍 1377655