A Bayesian Adaptive Umbrella Trial Design with Robust Information Borrowing for Screening Multiple Combination Therapies

贝叶斯概率 I类和II类错误 同质性(统计学) 计算机科学 适应性设计 中期分析 计量经济学 临床试验 医学 统计 机器学习 数学 人工智能 内科学
作者
Qing Liu,Wenxi Yu,Leiwen Gao,Xun Jiang,Michael Wolf,May Mo
出处
期刊:Statistics in Biopharmaceutical Research [Taylor & Francis]
卷期号:16 (2): 171-181
标识
DOI:10.1080/19466315.2023.2215735
摘要

AbstractAbstractIn immuno-oncology, developing combination therapies to overcome resistance to single agent or induce synergistic effects has become a new focus. To accelerate the screening process to identify promising combinations based on objective response rates, we propose a Bayesian adaptive Umbrella Trial design to simultaneously evaluate combinations of an investigational compound with different backbones, where information borrowing across combinations is allowed to increase trial efficiency. A robust borrowing approach is developed to strike a balance between borrowing and not borrowing by accounting for different configurations of homogeneity of treatment effects using Bayesian model averaging. Unlike existing methods that use the response rates to measure the degree of homogeneity by assuming all arms share a common control rate, an advantage of our approach is that it uses relative treatment effects to determine the degree of homogeneity by adjusting for different control effects across combinations. In the proposed design, Bayesian adaptive interim analyses are implemented to drop futile combinations and graduate early efficacious combinations. Simulation studies demonstrate that the proposed design with robust information borrowing outperforms some existing approaches. It improves power when treatment effects are homogeneous and maintains reasonable arm-wise Type I error rates when heterogeneity is present across combinations. Supplementary materials for this article are available online.KEYWORDS: Adaptive information borrowingBayesian adaptive designBayesian model averagingCombination therapiesUmbrella trial AcknowledgmentsThe authors appreciated the thoughtful reviews from the Referees and Editor. The comments and suggestions have led to substantial improvements of this paper.Supplementary MaterialsAdditional tables of the simulation results and the source R code are provided in the Supplementary Material.Additional informationFundingThe author(s) reported there is no funding associated with the work featured in this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
明亮的海白关注了科研通微信公众号
刚刚
1秒前
HaidongZhang发布了新的文献求助30
1秒前
2秒前
无花果应助狂野的梦之采纳,获得10
2秒前
mark2021发布了新的文献求助10
3秒前
3秒前
Hidden完成签到,获得积分10
4秒前
camellia发布了新的文献求助10
4秒前
5秒前
Owen应助小羊采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
6秒前
四月77发布了新的文献求助10
6秒前
清爽的乐曲完成签到,获得积分10
7秒前
jjn完成签到 ,获得积分10
7秒前
小菜发布了新的文献求助10
7秒前
科研通AI6应助wlm采纳,获得10
8秒前
9秒前
小雯钱来完成签到,获得积分10
9秒前
啵啵阳子完成签到,获得积分10
9秒前
刻苦的白梅完成签到,获得积分20
9秒前
Sun_Chen发布了新的文献求助10
9秒前
小福发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
11秒前
camellia完成签到,获得积分10
11秒前
小兰花完成签到,获得积分10
11秒前
晴清完成签到 ,获得积分10
13秒前
Owen应助XU2025采纳,获得10
13秒前
14秒前
LMW应助安详晓亦采纳,获得10
14秒前
14秒前
15秒前
寻觅发布了新的文献求助10
15秒前
烟花应助开朗尔蓝采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602181
求助须知:如何正确求助?哪些是违规求助? 4011609
关于积分的说明 12419641
捐赠科研通 3691701
什么是DOI,文献DOI怎么找? 2035278
邀请新用户注册赠送积分活动 1068494
科研通“疑难数据库(出版商)”最低求助积分说明 953025