A Bayesian Adaptive Umbrella Trial Design with Robust Information Borrowing for Screening Multiple Combination Therapies

贝叶斯概率 I类和II类错误 同质性(统计学) 计算机科学 适应性设计 中期分析 计量经济学 临床试验 医学 统计 机器学习 数学 人工智能 内科学
作者
Qing Liu,Wenxi Yu,Leiwen Gao,Xun Jiang,Michael Wolf,May Mo
出处
期刊:Statistics in Biopharmaceutical Research [Informa]
卷期号:16 (2): 171-181
标识
DOI:10.1080/19466315.2023.2215735
摘要

AbstractAbstractIn immuno-oncology, developing combination therapies to overcome resistance to single agent or induce synergistic effects has become a new focus. To accelerate the screening process to identify promising combinations based on objective response rates, we propose a Bayesian adaptive Umbrella Trial design to simultaneously evaluate combinations of an investigational compound with different backbones, where information borrowing across combinations is allowed to increase trial efficiency. A robust borrowing approach is developed to strike a balance between borrowing and not borrowing by accounting for different configurations of homogeneity of treatment effects using Bayesian model averaging. Unlike existing methods that use the response rates to measure the degree of homogeneity by assuming all arms share a common control rate, an advantage of our approach is that it uses relative treatment effects to determine the degree of homogeneity by adjusting for different control effects across combinations. In the proposed design, Bayesian adaptive interim analyses are implemented to drop futile combinations and graduate early efficacious combinations. Simulation studies demonstrate that the proposed design with robust information borrowing outperforms some existing approaches. It improves power when treatment effects are homogeneous and maintains reasonable arm-wise Type I error rates when heterogeneity is present across combinations. Supplementary materials for this article are available online.KEYWORDS: Adaptive information borrowingBayesian adaptive designBayesian model averagingCombination therapiesUmbrella trial AcknowledgmentsThe authors appreciated the thoughtful reviews from the Referees and Editor. The comments and suggestions have led to substantial improvements of this paper.Supplementary MaterialsAdditional tables of the simulation results and the source R code are provided in the Supplementary Material.Additional informationFundingThe author(s) reported there is no funding associated with the work featured in this article.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光应助小狒狒采纳,获得20
刚刚
刚刚
St完成签到,获得积分10
1秒前
aaa发布了新的文献求助10
1秒前
陈琳发布了新的文献求助10
2秒前
沚沐发布了新的文献求助10
2秒前
2秒前
pickme发布了新的文献求助10
2秒前
李健应助香菜味钠片采纳,获得10
3秒前
4秒前
R18686226306发布了新的文献求助10
4秒前
Hello应助王贤平采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
多多发布了新的文献求助10
7秒前
浮游应助march采纳,获得10
7秒前
7秒前
ttevi发布了新的文献求助10
7秒前
只争朝夕完成签到,获得积分10
7秒前
甜甜戎发布了新的文献求助10
7秒前
8秒前
爆米花应助沚沐采纳,获得10
8秒前
9秒前
可可卡比兽完成签到 ,获得积分10
9秒前
9秒前
饭饭发布了新的文献求助10
9秒前
9秒前
马甲发布了新的文献求助10
10秒前
Tam应助科研通管家采纳,获得50
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
11秒前
唐代斯发布了新的文献求助10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
12秒前
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
羊青发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684791
求助须知:如何正确求助?哪些是违规求助? 5038954
关于积分的说明 15185395
捐赠科研通 4843938
什么是DOI,文献DOI怎么找? 2597034
邀请新用户注册赠送积分活动 1549618
关于科研通互助平台的介绍 1508109