A Bayesian Adaptive Umbrella Trial Design with Robust Information Borrowing for Screening Multiple Combination Therapies

贝叶斯概率 I类和II类错误 同质性(统计学) 计算机科学 适应性设计 中期分析 计量经济学 临床试验 医学 统计 机器学习 数学 人工智能 内科学
作者
Qing Liu,Wenxi Yu,Leiwen Gao,Xun Jiang,Michael Wolf,May Mo
出处
期刊:Statistics in Biopharmaceutical Research [Informa]
卷期号:16 (2): 171-181
标识
DOI:10.1080/19466315.2023.2215735
摘要

AbstractAbstractIn immuno-oncology, developing combination therapies to overcome resistance to single agent or induce synergistic effects has become a new focus. To accelerate the screening process to identify promising combinations based on objective response rates, we propose a Bayesian adaptive Umbrella Trial design to simultaneously evaluate combinations of an investigational compound with different backbones, where information borrowing across combinations is allowed to increase trial efficiency. A robust borrowing approach is developed to strike a balance between borrowing and not borrowing by accounting for different configurations of homogeneity of treatment effects using Bayesian model averaging. Unlike existing methods that use the response rates to measure the degree of homogeneity by assuming all arms share a common control rate, an advantage of our approach is that it uses relative treatment effects to determine the degree of homogeneity by adjusting for different control effects across combinations. In the proposed design, Bayesian adaptive interim analyses are implemented to drop futile combinations and graduate early efficacious combinations. Simulation studies demonstrate that the proposed design with robust information borrowing outperforms some existing approaches. It improves power when treatment effects are homogeneous and maintains reasonable arm-wise Type I error rates when heterogeneity is present across combinations. Supplementary materials for this article are available online.KEYWORDS: Adaptive information borrowingBayesian adaptive designBayesian model averagingCombination therapiesUmbrella trial AcknowledgmentsThe authors appreciated the thoughtful reviews from the Referees and Editor. The comments and suggestions have led to substantial improvements of this paper.Supplementary MaterialsAdditional tables of the simulation results and the source R code are provided in the Supplementary Material.Additional informationFundingThe author(s) reported there is no funding associated with the work featured in this article.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闹闹发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
yaoyinlin发布了新的文献求助10
1秒前
asiya发布了新的文献求助10
2秒前
深情安青应助swslgd采纳,获得10
2秒前
3秒前
marmota发布了新的文献求助10
4秒前
zqy发布了新的文献求助30
4秒前
4秒前
小手冰凉完成签到 ,获得积分10
6秒前
FMK发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
桐桐应助XianyuQAQ采纳,获得10
7秒前
闹闹完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
marmota完成签到,获得积分10
10秒前
10秒前
听见发布了新的文献求助10
10秒前
happyrrc完成签到,获得积分10
10秒前
lucygaga完成签到 ,获得积分10
10秒前
tiantianwang完成签到,获得积分10
11秒前
风雨无阻发布了新的文献求助10
12秒前
小明应助李明采纳,获得10
13秒前
冷酷孤风发布了新的文献求助10
13秒前
13秒前
13秒前
嘉嘉发布了新的文献求助10
14秒前
14秒前
zqy完成签到,获得积分10
14秒前
危机的阁应助飞鱼采纳,获得150
15秒前
孤独宛凝完成签到,获得积分10
16秒前
16秒前
巴拉巴拉完成签到 ,获得积分10
16秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684634
求助须知:如何正确求助?哪些是违规求助? 5037948
关于积分的说明 15184748
捐赠科研通 4843860
什么是DOI,文献DOI怎么找? 2596968
邀请新用户注册赠送积分活动 1549572
关于科研通互助平台的介绍 1508077