A Bayesian Adaptive Umbrella Trial Design with Robust Information Borrowing for Screening Multiple Combination Therapies

贝叶斯概率 I类和II类错误 同质性(统计学) 计算机科学 适应性设计 中期分析 计量经济学 临床试验 医学 统计 机器学习 数学 人工智能 内科学
作者
Qing Liu,Wenxi Yu,Leiwen Gao,Xun Jiang,Michael Wolf,May Mo
出处
期刊:Statistics in Biopharmaceutical Research [Informa]
卷期号:16 (2): 171-181
标识
DOI:10.1080/19466315.2023.2215735
摘要

AbstractAbstractIn immuno-oncology, developing combination therapies to overcome resistance to single agent or induce synergistic effects has become a new focus. To accelerate the screening process to identify promising combinations based on objective response rates, we propose a Bayesian adaptive Umbrella Trial design to simultaneously evaluate combinations of an investigational compound with different backbones, where information borrowing across combinations is allowed to increase trial efficiency. A robust borrowing approach is developed to strike a balance between borrowing and not borrowing by accounting for different configurations of homogeneity of treatment effects using Bayesian model averaging. Unlike existing methods that use the response rates to measure the degree of homogeneity by assuming all arms share a common control rate, an advantage of our approach is that it uses relative treatment effects to determine the degree of homogeneity by adjusting for different control effects across combinations. In the proposed design, Bayesian adaptive interim analyses are implemented to drop futile combinations and graduate early efficacious combinations. Simulation studies demonstrate that the proposed design with robust information borrowing outperforms some existing approaches. It improves power when treatment effects are homogeneous and maintains reasonable arm-wise Type I error rates when heterogeneity is present across combinations. Supplementary materials for this article are available online.KEYWORDS: Adaptive information borrowingBayesian adaptive designBayesian model averagingCombination therapiesUmbrella trial AcknowledgmentsThe authors appreciated the thoughtful reviews from the Referees and Editor. The comments and suggestions have led to substantial improvements of this paper.Supplementary MaterialsAdditional tables of the simulation results and the source R code are provided in the Supplementary Material.Additional informationFundingThe author(s) reported there is no funding associated with the work featured in this article.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
激动的海豚完成签到,获得积分10
1秒前
2秒前
852应助siyu采纳,获得10
2秒前
2秒前
3秒前
sun完成签到,获得积分10
3秒前
ll发布了新的文献求助10
4秒前
爱飞的乌龟完成签到,获得积分10
4秒前
顾矜应助summer采纳,获得10
4秒前
长风发布了新的文献求助10
4秒前
Hi完成签到 ,获得积分20
6秒前
小郭完成签到 ,获得积分10
6秒前
小李叭叭发布了新的文献求助20
6秒前
6秒前
7秒前
7秒前
清欢渡Hertz完成签到 ,获得积分10
7秒前
万能图书馆应助PDD采纳,获得10
7秒前
老实的黑米完成签到 ,获得积分10
7秒前
8秒前
9秒前
9秒前
Akim应助小阿发采纳,获得10
10秒前
姜糖完成签到,获得积分10
11秒前
wanci应助心灵美从寒采纳,获得10
12秒前
12秒前
科研通AI6应助mxr采纳,获得200
12秒前
Vintoe完成签到 ,获得积分10
12秒前
12秒前
自然剑发布了新的文献求助10
13秒前
岳元满关注了科研通微信公众号
13秒前
wing发布了新的文献求助30
13秒前
科研通AI6应助TG采纳,获得10
14秒前
14秒前
露桥闻笛发布了新的文献求助10
15秒前
科小白完成签到 ,获得积分0
15秒前
爱学习的小张完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642264
求助须知:如何正确求助?哪些是违规求助? 4758561
关于积分的说明 15017114
捐赠科研通 4800890
什么是DOI,文献DOI怎么找? 2566214
邀请新用户注册赠送积分活动 1524333
关于科研通互助平台的介绍 1483913