A Bayesian Adaptive Umbrella Trial Design with Robust Information Borrowing for Screening Multiple Combination Therapies

贝叶斯概率 I类和II类错误 同质性(统计学) 计算机科学 适应性设计 中期分析 计量经济学 临床试验 医学 统计 机器学习 数学 人工智能 内科学
作者
Qing Liu,Wenxi Yu,Leiwen Gao,Xun Jiang,Michael Wolf,May Mo
出处
期刊:Statistics in Biopharmaceutical Research [Taylor & Francis]
卷期号:16 (2): 171-181
标识
DOI:10.1080/19466315.2023.2215735
摘要

AbstractAbstractIn immuno-oncology, developing combination therapies to overcome resistance to single agent or induce synergistic effects has become a new focus. To accelerate the screening process to identify promising combinations based on objective response rates, we propose a Bayesian adaptive Umbrella Trial design to simultaneously evaluate combinations of an investigational compound with different backbones, where information borrowing across combinations is allowed to increase trial efficiency. A robust borrowing approach is developed to strike a balance between borrowing and not borrowing by accounting for different configurations of homogeneity of treatment effects using Bayesian model averaging. Unlike existing methods that use the response rates to measure the degree of homogeneity by assuming all arms share a common control rate, an advantage of our approach is that it uses relative treatment effects to determine the degree of homogeneity by adjusting for different control effects across combinations. In the proposed design, Bayesian adaptive interim analyses are implemented to drop futile combinations and graduate early efficacious combinations. Simulation studies demonstrate that the proposed design with robust information borrowing outperforms some existing approaches. It improves power when treatment effects are homogeneous and maintains reasonable arm-wise Type I error rates when heterogeneity is present across combinations. Supplementary materials for this article are available online.KEYWORDS: Adaptive information borrowingBayesian adaptive designBayesian model averagingCombination therapiesUmbrella trial AcknowledgmentsThe authors appreciated the thoughtful reviews from the Referees and Editor. The comments and suggestions have led to substantial improvements of this paper.Supplementary MaterialsAdditional tables of the simulation results and the source R code are provided in the Supplementary Material.Additional informationFundingThe author(s) reported there is no funding associated with the work featured in this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
里里完成签到,获得积分10
刚刚
1秒前
姚芭蕉发布了新的文献求助10
2秒前
酸奶燕麦球完成签到 ,获得积分10
3秒前
发嗲的乐安完成签到 ,获得积分10
3秒前
爆米花应助魔幻的泽洋采纳,获得10
6秒前
6秒前
FH挖掘机关注了科研通微信公众号
9秒前
文献自由侠完成签到,获得积分20
9秒前
陳新儒发布了新的文献求助10
9秒前
10秒前
Gauss应助heavenhorse采纳,获得30
11秒前
蟹老板完成签到,获得积分10
11秒前
11秒前
闵运气完成签到,获得积分10
11秒前
陌路发布了新的文献求助10
11秒前
斯文败类应助嘟嘟包采纳,获得30
12秒前
汉堡格完成签到,获得积分10
12秒前
13秒前
小凯同学完成签到 ,获得积分10
13秒前
沫沫完成签到 ,获得积分10
13秒前
叙白发布了新的文献求助30
13秒前
14秒前
斩妖凉完成签到,获得积分10
16秒前
16秒前
dudu发布了新的文献求助10
16秒前
子訡完成签到 ,获得积分10
16秒前
Xieyusen发布了新的文献求助10
16秒前
爱炖鸽子的咕咕完成签到,获得积分10
17秒前
欢呼忆丹发布了新的文献求助30
18秒前
18秒前
19秒前
19秒前
完美世界应助ZH采纳,获得10
20秒前
早睡发布了新的文献求助10
20秒前
sevenvictory应助颜琪采纳,获得10
20秒前
21秒前
梦比优斯发布了新的文献求助10
23秒前
23秒前
Dominic发布了新的文献求助10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966626
求助须知:如何正确求助?哪些是违规求助? 3512100
关于积分的说明 11161688
捐赠科研通 3246938
什么是DOI,文献DOI怎么找? 1793609
邀请新用户注册赠送积分活动 874495
科研通“疑难数据库(出版商)”最低求助积分说明 804420