Deep-Learning-Based Automated Tracking and Counting of Living Plankton in Natural Aquatic Environments

浮游生物 浮游动物 稳健性(进化) 环境监测 工作流程 计算机科学 环境科学 水质 人工智能 机器学习 生态学 环境工程 生物 数据库 生物化学 基因
作者
Zhuo Chen,Meng Du,Xudan Yang,Wei Chen,Yu‐Sheng Li,Chen Qian,Han‐Qing Yu
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (46): 18048-18057 被引量:18
标识
DOI:10.1021/acs.est.3c00253
摘要

Plankton are widely distributed in the aquatic environment and serve as an indicator of water quality. Monitoring the spatiotemporal variation in plankton is an efficient approach to forewarning environmental risks. However, conventional microscopy counting is time-consuming and laborious, hindering the application of plankton statistics for environmental monitoring. In this work, an automated video-oriented plankton tracking workflow (AVPTW) based on deep learning is proposed for continuous monitoring of living plankton abundance in aquatic environments. With automatic video acquisition, background calibration, detection, tracking, correction, and statistics, various types of moving zooplankton and phytoplankton were counted at a time scale. The accuracy of AVPTW was validated with conventional counting via microscopy. Since AVPTW is only sensitive to mobile plankton, the temperature- and wastewater-discharge-induced plankton population variations were monitored online, demonstrating the sensitivity of AVPTW to environmental changes. The robustness of AVPTW was also confirmed with natural water samples from a contaminated river and an uncontaminated lake. Notably, automated workflows are essential for generating large amounts of data, which are a prerequisite for available data set construction and subsequent data mining. Furthermore, data-driven approaches based on deep learning pave a novel way for long-term online environmental monitoring and elucidating the correlation underlying environmental indicators. This work provides a replicable paradigm to combine imaging devices with deep-learning algorithms for environmental monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XHY123完成签到,获得积分10
刚刚
zhp发布了新的文献求助10
刚刚
刚刚
小巧孤晴完成签到,获得积分10
刚刚
hbhbj发布了新的文献求助10
刚刚
jiang应助aaa采纳,获得20
1秒前
小杭76应助伽古拉40k采纳,获得10
1秒前
科研通AI6应助浪荡胭脂马采纳,获得10
2秒前
Violazheng228发布了新的文献求助10
3秒前
Yichao完成签到,获得积分10
3秒前
冷静剑鬼完成签到,获得积分10
3秒前
Wangle发布了新的文献求助10
3秒前
学习发布了新的文献求助10
3秒前
LIBINWANG发布了新的文献求助30
3秒前
虚心的夜山完成签到,获得积分10
4秒前
4秒前
elysia发布了新的文献求助10
4秒前
7秒前
7秒前
8秒前
坚定的怜菡完成签到,获得积分20
8秒前
田様应助负责的元柏采纳,获得10
9秒前
9秒前
落寞成危完成签到,获得积分20
9秒前
10秒前
学习完成签到,获得积分20
10秒前
hbhbj发布了新的文献求助10
10秒前
Doc邓爱科研完成签到,获得积分10
10秒前
王译自发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
安然发布了新的文献求助10
12秒前
小二郎应助elysia采纳,获得10
12秒前
独特振家发布了新的文献求助10
12秒前
12秒前
12秒前
Criminology34应助修辛采纳,获得10
13秒前
LIBINWANG完成签到,获得积分20
13秒前
喵喵喵发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406795
求助须知:如何正确求助?哪些是违规求助? 4524516
关于积分的说明 14098938
捐赠科研通 4438379
什么是DOI,文献DOI怎么找? 2436217
邀请新用户注册赠送积分活动 1428245
关于科研通互助平台的介绍 1406340