已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep-Learning-Based Automated Tracking and Counting of Living Plankton in Natural Aquatic Environments

浮游生物 浮游动物 稳健性(进化) 环境监测 工作流程 计算机科学 环境科学 水质 人工智能 机器学习 生态学 环境工程 生物 数据库 生物化学 基因
作者
Zhuo Chen,Meng Du,Xudan Yang,Wei Chen,Yu‐Sheng Li,Chen Qian,Han‐Qing Yu
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (46): 18048-18057 被引量:10
标识
DOI:10.1021/acs.est.3c00253
摘要

Plankton are widely distributed in the aquatic environment and serve as an indicator of water quality. Monitoring the spatiotemporal variation in plankton is an efficient approach to forewarning environmental risks. However, conventional microscopy counting is time-consuming and laborious, hindering the application of plankton statistics for environmental monitoring. In this work, an automated video-oriented plankton tracking workflow (AVPTW) based on deep learning is proposed for continuous monitoring of living plankton abundance in aquatic environments. With automatic video acquisition, background calibration, detection, tracking, correction, and statistics, various types of moving zooplankton and phytoplankton were counted at a time scale. The accuracy of AVPTW was validated with conventional counting via microscopy. Since AVPTW is only sensitive to mobile plankton, the temperature- and wastewater-discharge-induced plankton population variations were monitored online, demonstrating the sensitivity of AVPTW to environmental changes. The robustness of AVPTW was also confirmed with natural water samples from a contaminated river and an uncontaminated lake. Notably, automated workflows are essential for generating large amounts of data, which are a prerequisite for available data set construction and subsequent data mining. Furthermore, data-driven approaches based on deep learning pave a novel way for long-term online environmental monitoring and elucidating the correlation underlying environmental indicators. This work provides a replicable paradigm to combine imaging devices with deep-learning algorithms for environmental monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彭于晏应助Zero采纳,获得30
3秒前
wanci应助yq采纳,获得10
3秒前
hzl完成签到,获得积分10
4秒前
王木木发布了新的文献求助10
5秒前
楠易发布了新的文献求助10
5秒前
Sylvia_J完成签到 ,获得积分10
7秒前
完美凝海完成签到 ,获得积分10
7秒前
SciGPT应助给一采纳,获得10
10秒前
韭菜圈发布了新的文献求助10
11秒前
12秒前
楠易完成签到,获得积分10
13秒前
ww完成签到,获得积分10
15秒前
16秒前
orixero应助边缘采纳,获得10
16秒前
MZ完成签到,获得积分10
16秒前
16秒前
谨慎的雨灵完成签到,获得积分10
17秒前
SciGPT应助yq采纳,获得30
19秒前
YCQ发布了新的文献求助10
19秒前
perfect完成签到 ,获得积分10
20秒前
思源应助姚驰采纳,获得10
20秒前
fengzhang发布了新的文献求助10
22秒前
22秒前
从容如豹发布了新的文献求助200
22秒前
23秒前
23秒前
烟花应助YCQ采纳,获得10
23秒前
26秒前
26秒前
27秒前
SYX完成签到 ,获得积分10
27秒前
Narcissus完成签到,获得积分10
28秒前
onmymark发布了新的文献求助10
28秒前
希夷发布了新的文献求助10
28秒前
科研通AI6应助Colorc采纳,获得10
30秒前
Zero发布了新的文献求助30
31秒前
31秒前
边缘发布了新的文献求助10
32秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4594081
求助须知:如何正确求助?哪些是违规求助? 4006946
关于积分的说明 12406976
捐赠科研通 3685174
什么是DOI,文献DOI怎么找? 2031081
邀请新用户注册赠送积分活动 1064353
科研通“疑难数据库(出版商)”最低求助积分说明 949625