亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep-Learning-Based Automated Tracking and Counting of Living Plankton in Natural Aquatic Environments

浮游生物 浮游动物 稳健性(进化) 环境监测 工作流程 计算机科学 环境科学 水质 人工智能 机器学习 生态学 环境工程 生物 数据库 生物化学 基因
作者
Zhuo Chen,Meng Du,Xudan Yang,Wei Chen,Yu‐Sheng Li,Chen Qian,Han‐Qing Yu
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (46): 18048-18057 被引量:18
标识
DOI:10.1021/acs.est.3c00253
摘要

Plankton are widely distributed in the aquatic environment and serve as an indicator of water quality. Monitoring the spatiotemporal variation in plankton is an efficient approach to forewarning environmental risks. However, conventional microscopy counting is time-consuming and laborious, hindering the application of plankton statistics for environmental monitoring. In this work, an automated video-oriented plankton tracking workflow (AVPTW) based on deep learning is proposed for continuous monitoring of living plankton abundance in aquatic environments. With automatic video acquisition, background calibration, detection, tracking, correction, and statistics, various types of moving zooplankton and phytoplankton were counted at a time scale. The accuracy of AVPTW was validated with conventional counting via microscopy. Since AVPTW is only sensitive to mobile plankton, the temperature- and wastewater-discharge-induced plankton population variations were monitored online, demonstrating the sensitivity of AVPTW to environmental changes. The robustness of AVPTW was also confirmed with natural water samples from a contaminated river and an uncontaminated lake. Notably, automated workflows are essential for generating large amounts of data, which are a prerequisite for available data set construction and subsequent data mining. Furthermore, data-driven approaches based on deep learning pave a novel way for long-term online environmental monitoring and elucidating the correlation underlying environmental indicators. This work provides a replicable paradigm to combine imaging devices with deep-learning algorithms for environmental monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一元发布了新的文献求助10
3秒前
田様应助byby采纳,获得10
7秒前
田様应助一元采纳,获得10
9秒前
xq完成签到,获得积分10
22秒前
35秒前
愉快的犀牛完成签到 ,获得积分10
59秒前
善学以致用应助小满采纳,获得10
1分钟前
冷酷代珊完成签到,获得积分10
1分钟前
1分钟前
小满发布了新的文献求助10
1分钟前
1分钟前
小满完成签到,获得积分10
1分钟前
1分钟前
byby发布了新的文献求助10
1分钟前
1分钟前
KNOW完成签到 ,获得积分10
1分钟前
今后应助byby采纳,获得10
1分钟前
蓁蓁发布了新的文献求助10
1分钟前
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
byby发布了新的文献求助10
2分钟前
川川完成签到 ,获得积分10
2分钟前
2分钟前
rev发布了新的文献求助10
2分钟前
rev完成签到,获得积分20
2分钟前
h0jian09完成签到,获得积分10
2分钟前
2分钟前
byby发布了新的文献求助10
2分钟前
孟繁荣发布了新的文献求助10
2分钟前
一元发布了新的文献求助10
2分钟前
jyy完成签到,获得积分10
2分钟前
喜悦的小土豆完成签到 ,获得积分10
2分钟前
蓁蓁完成签到,获得积分20
2分钟前
byby发布了新的文献求助10
2分钟前
领导范儿应助孟繁荣采纳,获得10
2分钟前
小二郎应助yqt采纳,获得10
2分钟前
wanci应助小树枝采纳,获得10
3分钟前
3分钟前
wangxw完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401309
求助须知:如何正确求助?哪些是违规求助? 4520217
关于积分的说明 14079271
捐赠科研通 4433432
什么是DOI,文献DOI怎么找? 2434112
邀请新用户注册赠送积分活动 1426276
关于科研通互助平台的介绍 1404910