Deep-Learning-Based Automated Tracking and Counting of Living Plankton in Natural Aquatic Environments

浮游生物 浮游动物 稳健性(进化) 环境监测 工作流程 计算机科学 环境科学 水质 人工智能 机器学习 生态学 环境工程 生物 数据库 生物化学 基因
作者
Zhuo Chen,Meng Du,Xudan Yang,Wei Chen,Yu‐Sheng Li,Chen Qian,Han‐Qing Yu
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (46): 18048-18057 被引量:18
标识
DOI:10.1021/acs.est.3c00253
摘要

Plankton are widely distributed in the aquatic environment and serve as an indicator of water quality. Monitoring the spatiotemporal variation in plankton is an efficient approach to forewarning environmental risks. However, conventional microscopy counting is time-consuming and laborious, hindering the application of plankton statistics for environmental monitoring. In this work, an automated video-oriented plankton tracking workflow (AVPTW) based on deep learning is proposed for continuous monitoring of living plankton abundance in aquatic environments. With automatic video acquisition, background calibration, detection, tracking, correction, and statistics, various types of moving zooplankton and phytoplankton were counted at a time scale. The accuracy of AVPTW was validated with conventional counting via microscopy. Since AVPTW is only sensitive to mobile plankton, the temperature- and wastewater-discharge-induced plankton population variations were monitored online, demonstrating the sensitivity of AVPTW to environmental changes. The robustness of AVPTW was also confirmed with natural water samples from a contaminated river and an uncontaminated lake. Notably, automated workflows are essential for generating large amounts of data, which are a prerequisite for available data set construction and subsequent data mining. Furthermore, data-driven approaches based on deep learning pave a novel way for long-term online environmental monitoring and elucidating the correlation underlying environmental indicators. This work provides a replicable paradigm to combine imaging devices with deep-learning algorithms for environmental monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助柳绿柳采纳,获得10
1秒前
有魅力的超短裙完成签到,获得积分10
2秒前
2秒前
嘿嘿嘿发布了新的文献求助10
4秒前
蟹蟹完成签到,获得积分10
7秒前
7秒前
10秒前
fanssw完成签到 ,获得积分0
10秒前
14秒前
哈哈完成签到,获得积分10
15秒前
英俊的铭应助起床做核酸采纳,获得10
17秒前
duoxue发布了新的文献求助10
19秒前
22秒前
22秒前
23秒前
彪彪完成签到 ,获得积分10
25秒前
25秒前
王木车发布了新的文献求助10
26秒前
crane完成签到,获得积分10
27秒前
28秒前
29秒前
caibao完成签到 ,获得积分10
30秒前
31秒前
jessia发布了新的文献求助10
33秒前
负责从丹完成签到,获得积分10
34秒前
诚心的大侠完成签到,获得积分10
36秒前
Zz完成签到 ,获得积分10
36秒前
奶昔发布了新的文献求助10
40秒前
DD完成签到,获得积分10
41秒前
姜饼关注了科研通微信公众号
45秒前
姜饼完成签到 ,获得积分10
46秒前
姜饼关注了科研通微信公众号
46秒前
Jasper应助小满采纳,获得10
50秒前
52秒前
52秒前
52秒前
qin1172001发布了新的文献求助10
56秒前
奶昔完成签到,获得积分10
58秒前
WalkToSky完成签到,获得积分10
59秒前
陌上花发布了新的文献求助10
59秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5383779
求助须知:如何正确求助?哪些是违规求助? 4506764
关于积分的说明 14025582
捐赠科研通 4416489
什么是DOI,文献DOI怎么找? 2426006
邀请新用户注册赠送积分活动 1418767
关于科研通互助平台的介绍 1397011