Deep-Learning-Based Automated Tracking and Counting of Living Plankton in Natural Aquatic Environments

浮游生物 浮游动物 稳健性(进化) 环境监测 工作流程 计算机科学 环境科学 水质 人工智能 机器学习 生态学 环境工程 生物 数据库 生物化学 基因
作者
Zhuo Chen,Meng Du,Xudan Yang,Wei Chen,Yu‐Sheng Li,Chen Qian,Han‐Qing Yu
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (46): 18048-18057 被引量:10
标识
DOI:10.1021/acs.est.3c00253
摘要

Plankton are widely distributed in the aquatic environment and serve as an indicator of water quality. Monitoring the spatiotemporal variation in plankton is an efficient approach to forewarning environmental risks. However, conventional microscopy counting is time-consuming and laborious, hindering the application of plankton statistics for environmental monitoring. In this work, an automated video-oriented plankton tracking workflow (AVPTW) based on deep learning is proposed for continuous monitoring of living plankton abundance in aquatic environments. With automatic video acquisition, background calibration, detection, tracking, correction, and statistics, various types of moving zooplankton and phytoplankton were counted at a time scale. The accuracy of AVPTW was validated with conventional counting via microscopy. Since AVPTW is only sensitive to mobile plankton, the temperature- and wastewater-discharge-induced plankton population variations were monitored online, demonstrating the sensitivity of AVPTW to environmental changes. The robustness of AVPTW was also confirmed with natural water samples from a contaminated river and an uncontaminated lake. Notably, automated workflows are essential for generating large amounts of data, which are a prerequisite for available data set construction and subsequent data mining. Furthermore, data-driven approaches based on deep learning pave a novel way for long-term online environmental monitoring and elucidating the correlation underlying environmental indicators. This work provides a replicable paradigm to combine imaging devices with deep-learning algorithms for environmental monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chaozihao完成签到,获得积分10
1秒前
科研通AI6应助ZHH采纳,获得10
2秒前
Kz发布了新的文献求助10
3秒前
失眠振家完成签到,获得积分20
4秒前
弎夜完成签到,获得积分10
4秒前
充电宝应助lipanpan采纳,获得10
6秒前
风趣的碧琴完成签到 ,获得积分10
6秒前
牵着猴子晒月亮完成签到,获得积分10
8秒前
Hilda007应助PhD采纳,获得10
8秒前
9秒前
10秒前
11秒前
12秒前
12秒前
唯梦发布了新的文献求助10
14秒前
汉堡包应助潇洒映冬采纳,获得10
16秒前
yorktang发布了新的文献求助10
18秒前
搜集达人应助科研小白采纳,获得10
18秒前
嘿嘿完成签到,获得积分10
19秒前
玻色子完成签到,获得积分10
19秒前
19秒前
19秒前
十三驳回了英姑应助
19秒前
jyy完成签到 ,获得积分10
20秒前
22秒前
z549326399完成签到,获得积分10
22秒前
22秒前
自由冬亦完成签到,获得积分10
23秒前
liu发布了新的文献求助10
23秒前
WSQ发布了新的文献求助10
23秒前
24秒前
jason发布了新的文献求助10
26秒前
玻色子发布了新的文献求助10
26秒前
wangzhen完成签到 ,获得积分10
26秒前
moonlight完成签到,获得积分10
27秒前
科研通AI2S应助林药师采纳,获得10
28秒前
29秒前
群山发布了新的文献求助10
29秒前
29秒前
Ava应助lxy采纳,获得10
29秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339290
求助须知:如何正确求助?哪些是违规求助? 4476138
关于积分的说明 13930647
捐赠科研通 4371604
什么是DOI,文献DOI怎么找? 2401978
邀请新用户注册赠送积分活动 1394933
关于科研通互助平台的介绍 1366848