Deep-Learning-Based Automated Tracking and Counting of Living Plankton in Natural Aquatic Environments

浮游生物 浮游动物 稳健性(进化) 环境监测 工作流程 计算机科学 环境科学 水质 人工智能 机器学习 生态学 环境工程 生物 数据库 生物化学 基因
作者
Zhuo Chen,Meng Du,Xudan Yang,Wei Chen,Yu‐Sheng Li,Chen Qian,Han‐Qing Yu
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (46): 18048-18057 被引量:10
标识
DOI:10.1021/acs.est.3c00253
摘要

Plankton are widely distributed in the aquatic environment and serve as an indicator of water quality. Monitoring the spatiotemporal variation in plankton is an efficient approach to forewarning environmental risks. However, conventional microscopy counting is time-consuming and laborious, hindering the application of plankton statistics for environmental monitoring. In this work, an automated video-oriented plankton tracking workflow (AVPTW) based on deep learning is proposed for continuous monitoring of living plankton abundance in aquatic environments. With automatic video acquisition, background calibration, detection, tracking, correction, and statistics, various types of moving zooplankton and phytoplankton were counted at a time scale. The accuracy of AVPTW was validated with conventional counting via microscopy. Since AVPTW is only sensitive to mobile plankton, the temperature- and wastewater-discharge-induced plankton population variations were monitored online, demonstrating the sensitivity of AVPTW to environmental changes. The robustness of AVPTW was also confirmed with natural water samples from a contaminated river and an uncontaminated lake. Notably, automated workflows are essential for generating large amounts of data, which are a prerequisite for available data set construction and subsequent data mining. Furthermore, data-driven approaches based on deep learning pave a novel way for long-term online environmental monitoring and elucidating the correlation underlying environmental indicators. This work provides a replicable paradigm to combine imaging devices with deep-learning algorithms for environmental monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
mhuim发布了新的文献求助10
1秒前
1秒前
1111应助ntrip采纳,获得10
1秒前
CodeCraft应助tomomi61采纳,获得10
2秒前
3秒前
4秒前
Criminology34应助TyrickS采纳,获得10
4秒前
6秒前
wjx发布了新的文献求助10
6秒前
6秒前
大大怪发布了新的文献求助10
6秒前
jhz发布了新的文献求助10
7秒前
wxx771510625完成签到,获得积分10
8秒前
可爱寻芹完成签到 ,获得积分10
8秒前
8秒前
ZZZ完成签到 ,获得积分10
9秒前
听风遇见发布了新的文献求助10
10秒前
tong完成签到,获得积分10
11秒前
12秒前
毕加狗完成签到 ,获得积分10
14秒前
无花果应助jhz采纳,获得10
14秒前
鳗鱼行天发布了新的文献求助10
16秒前
xiaxia完成签到 ,获得积分10
18秒前
Xinxxx应助天字十封采纳,获得10
18秒前
田欣发布了新的文献求助10
19秒前
linlin完成签到,获得积分10
19秒前
JJ完成签到 ,获得积分10
19秒前
Vans完成签到,获得积分10
23秒前
qqli发布了新的文献求助10
23秒前
大牛顿完成签到,获得积分10
25秒前
又何必呢完成签到,获得积分10
27秒前
小马甲应助栗子栗栗子采纳,获得10
27秒前
28秒前
licheng完成签到,获得积分10
28秒前
务实莫言完成签到 ,获得积分10
29秒前
迷了路的猫完成签到,获得积分10
29秒前
疯狂的依秋完成签到,获得积分10
30秒前
又何必呢发布了新的文献求助10
30秒前
Hello应助冯冯采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5258672
求助须知:如何正确求助?哪些是违规求助? 4420629
关于积分的说明 13760748
捐赠科研通 4294297
什么是DOI,文献DOI怎么找? 2356344
邀请新用户注册赠送积分活动 1352673
关于科研通互助平台的介绍 1313526