亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adaptively leveraging external data with robust meta‐analytical‐predictive prior using empirical Bayes

杠杆(统计) 计算机科学 贝叶斯定理 先验概率 数据挖掘 机器学习 统计 人工智能 贝叶斯概率 数学
作者
Hongtao Zhang,Yueqi Shen,Judy Li,Ye Han,Alan Y. Chiang
出处
期刊:Pharmaceutical Statistics [Wiley]
卷期号:22 (5): 846-860 被引量:1
标识
DOI:10.1002/pst.2315
摘要

Abstract The robust meta‐analytical‐predictive (rMAP) prior is a popular method to robustly leverage external data. However, a mixture coefficient would need to be pre‐specified based on the anticipated level of prior‐data conflict. This can be very challenging at the study design stage. We propose a novel empirical Bayes robust MAP (EB‐rMAP) prior to address this practical need and adaptively leverage external/historical data. Built on Box's prior predictive p ‐value, the EB‐rMAP prior framework balances between model parsimony and flexibility through a tuning parameter. The proposed framework can be applied to binomial, normal, and time‐to‐event endpoints. Implementation of the EB‐rMAP prior is also computationally efficient. Simulation results demonstrate that the EB‐rMAP prior is robust in the presence of prior‐data conflict while preserving statistical power. The proposed EB‐rMAP prior is then applied to a clinical dataset that comprises 10 oncology clinical trials, including the prospective study.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
7秒前
7秒前
7秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
领导范儿应助Elen1987采纳,获得10
12秒前
13秒前
科研通AI6.1应助jy采纳,获得10
25秒前
26秒前
31秒前
Lucas应助KKLUV采纳,获得10
33秒前
36秒前
jy发布了新的文献求助10
43秒前
51秒前
伊力扎提完成签到,获得积分10
58秒前
1分钟前
1分钟前
1分钟前
孙泉发布了新的文献求助10
1分钟前
1分钟前
1分钟前
852应助zslg采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
zslg发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
如意秋珊完成签到 ,获得积分10
3分钟前
3分钟前
畅快甜瓜发布了新的文献求助30
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732308
求助须知:如何正确求助?哪些是违规求助? 5338178
关于积分的说明 15322147
捐赠科研通 4877945
什么是DOI,文献DOI怎么找? 2620761
邀请新用户注册赠送积分活动 1569978
关于科研通互助平台的介绍 1526615