已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MMSMCNet: Modal Memory Sharing and Morphological Complementary Networks for RGB-T Urban Scene Semantic Segmentation

计算机科学 人工智能 RGB颜色模型 分割 模式识别(心理学) 特征(语言学) 特征提取 解码方法 计算机视觉 语言学 电信 哲学
作者
Wujie Zhou,Han Zhang,Weiqing Yan,Weisi Lin
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (12): 7096-7108 被引量:21
标识
DOI:10.1109/tcsvt.2023.3275314
摘要

Combining color (RGB) images with thermal images can facilitate semantic segmentation of poorly lit urban scenes. However, for RGB-thermal (RGB-T) semantic segmentation, most existing models address cross-modal feature fusion by focusing only on exploring the samples while neglecting the connections between different samples. Additionally, although the importance of boundary, binary, and semantic information is considered in the decoding process, the differences and complementarities between different morphological features are usually neglected. In this paper, we propose a novel RGB-T semantic segmentation network, called MMSMCNet, based on modal memory fusion and morphological multiscale assistance to address the aforementioned problems. For this network, in the encoding part, we used SegFormer for feature extraction of bimodal inputs. Next, our modal memory sharing module implements staged learning and memory sharing of sample information across modal multiscales. Furthermore, we constructed a decoding union unit comprising three decoding units in a layer-by-layer progression that can extract two different morphological features according to the information category and realize the complementary utilization of multiscale cross-modal fusion information. Each unit contains a contour positioning module based on detail information, a skeleton positioning module with deep features as the primary input, and a morphological complementary module for mutual reinforcement of the first two types of information and construction of semantic information. Based on this, we constructed a new supervision strategy, that is, a multi-unit-based complementary supervision strategy. Extensive experiments using two standard datasets showed that MMSMCNet outperformed related state-of-the-art methods. The code is available at: https://github.com/2021nihao/MMSMCNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐安完成签到,获得积分10
刚刚
科研通AI2S应助小妤丸子采纳,获得10
2秒前
猪猪hero发布了新的文献求助10
3秒前
今天没烦恼完成签到 ,获得积分10
4秒前
打打应助高贵的子默采纳,获得10
6秒前
xiaoxiao完成签到,获得积分10
7秒前
桐安发布了新的文献求助10
11秒前
我是老大应助科研通管家采纳,获得10
13秒前
思源应助科研通管家采纳,获得10
13秒前
衣谷完成签到 ,获得积分10
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
小欧完成签到 ,获得积分10
15秒前
CJY完成签到 ,获得积分10
16秒前
猪猪hero完成签到,获得积分10
17秒前
larrry完成签到 ,获得积分10
19秒前
Xumeiling完成签到,获得积分10
20秒前
帅气的凌寒完成签到,获得积分10
20秒前
FashionBoy应助忧虑的羊采纳,获得10
25秒前
25秒前
非泥完成签到,获得积分10
26秒前
binol发布了新的文献求助20
28秒前
yc完成签到,获得积分20
29秒前
30秒前
lizhoukan1完成签到,获得积分10
31秒前
果粒橙完成签到 ,获得积分10
32秒前
yc发布了新的文献求助10
33秒前
33秒前
36秒前
赘婿应助王大壮采纳,获得30
38秒前
忧虑的羊发布了新的文献求助10
38秒前
39秒前
打打应助yc采纳,获得10
42秒前
IC发布了新的文献求助10
42秒前
luroa完成签到 ,获得积分10
43秒前
49秒前
50秒前
迅速的仰发布了新的文献求助10
52秒前
53秒前
54秒前
binol完成签到,获得积分10
57秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164662
求助须知:如何正确求助?哪些是违规求助? 2815515
关于积分的说明 7909801
捐赠科研通 2475233
什么是DOI,文献DOI怎么找? 1318022
科研通“疑难数据库(出版商)”最低求助积分说明 631984
版权声明 602282