Efficient and Robust: A Cross-Modal Registration Deep Wavelet Learning Method for Remote Sensing Images

人工智能 计算机科学 小波 模式识别(心理学) 卷积神经网络 稳健性(进化) 判别式 深度学习 小波变换 情态动词 计算机视觉 图像配准 特征提取 特征(语言学) 匹配(统计) 图像(数学) 数学 哲学 统计 基因 化学 高分子化学 生物化学 语言学
作者
Dou Quan,Huiyuan Wei,Shuang Wang,Yi Li,Jocelyn Chanussot,Yanhe Guo,Biao Hou,Licheng Jiao
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 4739-4754 被引量:16
标识
DOI:10.1109/jstars.2023.3276409
摘要

Deep convolutional networks are powerful for local feature learning and have shown advantages in image matching and registration. However, the significant differences between cross-modal images increase the challenge of image registration. The deep network should extract modality-invariant features to identify the matching samples and discriminative features to separate the nonmatching samples. The deep network can extract features invariant to the image modality changes by multiple nonlinear mapping layers. However, it does not inevitably lose rich details and affect the discrimination of features, degrading registration performances. This article proposes a novel deep wavelet learning network (DW-Net) for local feature learning. It incorporates spectral information into deep convolutional features for improving cross-modal image matching and registration. Specifically, this article aims to learn the multiresolution wavelet features through multilevel wavelet transform (WT) and the convolutional network. The cross-modal images are divided into low-frequency and high-frequency parts through WT. DW-Net can adaptively extract the shared features from the low-frequency part and useful details from the high-frequency part, which can enhance the modality invariance and discrimination of features. Additionally, the multiresolution wavelet features contain multiscale information and contribute to improving the matching accuracy. Extensive experiments demonstrate the significant advantages in terms of the accuracy and robustness of DW-Net on cross-modal remote sensing image registration. DW-Net can increase the image patch matching accuracy by 3.7% and improve image registration probability by 12.1%. Moreover, DW-Net shows strong generalization performances from low resolution to high resolution and from optical– synthetic aperture radar to other cross-modal image registration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李志豪发布了新的文献求助10
刚刚
高高碧发布了新的文献求助10
1秒前
1秒前
Karrisa完成签到,获得积分10
2秒前
我不咋爱看文献完成签到 ,获得积分10
2秒前
bfs完成签到 ,获得积分10
2秒前
ZSH完成签到,获得积分10
3秒前
文艺白晴完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
Pierce发布了新的文献求助10
4秒前
不器君发布了新的文献求助10
4秒前
Li发布了新的文献求助10
4秒前
4秒前
图图完成签到,获得积分10
4秒前
yang完成签到,获得积分10
5秒前
6秒前
chen完成签到,获得积分20
6秒前
7秒前
henry完成签到,获得积分10
8秒前
文艺白晴关注了科研通微信公众号
8秒前
lx123发布了新的文献求助10
8秒前
大模型应助阔达宝莹采纳,获得10
9秒前
图图发布了新的文献求助50
9秒前
Splaink发布了新的文献求助10
9秒前
CC发布了新的文献求助10
9秒前
zl12应助xixi采纳,获得10
10秒前
谷云发布了新的文献求助10
11秒前
Dali应助楚子航采纳,获得20
12秒前
老大车完成签到,获得积分10
12秒前
星辰大海应助zhuang采纳,获得30
12秒前
13秒前
帅到被人打完成签到,获得积分10
14秒前
初秋完成签到,获得积分10
14秒前
14秒前
汉堡包应助宋依依采纳,获得10
15秒前
浮游应助Pierce采纳,获得10
16秒前
bbhk完成签到,获得积分10
17秒前
wwqc完成签到,获得积分0
17秒前
Ting发布了新的文献求助20
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637553
求助须知:如何正确求助?哪些是违规求助? 4743563
关于积分的说明 14999628
捐赠科研通 4795653
什么是DOI,文献DOI怎么找? 2562146
邀请新用户注册赠送积分活动 1521595
关于科研通互助平台的介绍 1481573