Efficient and Robust: A Cross-Modal Registration Deep Wavelet Learning Method for Remote Sensing Images

人工智能 计算机科学 小波 模式识别(心理学) 卷积神经网络 稳健性(进化) 判别式 深度学习 小波变换 情态动词 计算机视觉 图像配准 特征提取 特征(语言学) 匹配(统计) 图像(数学) 数学 哲学 化学 高分子化学 基因 生物化学 语言学 统计
作者
Dou Quan,Huiyuan Wei,Shuang Wang,Yi Li,Jocelyn Chanussot,Yanhe Guo,Biao Hou,Licheng Jiao
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 4739-4754 被引量:8
标识
DOI:10.1109/jstars.2023.3276409
摘要

Deep convolutional networks are powerful for local feature learning and have shown advantages in image matching and registration. However, the significant differences between cross-modal images increase the challenge of image registration. The deep network should extract modality-invariant features to identify the matching samples and discriminative features to separate the nonmatching samples. The deep network can extract features invariant to the image modality changes by multiple nonlinear mapping layers. However, it does not inevitably lose rich details and affect the discrimination of features, degrading registration performances. This article proposes a novel deep wavelet learning network (DW-Net) for local feature learning. It incorporates spectral information into deep convolutional features for improving cross-modal image matching and registration. Specifically, this article aims to learn the multiresolution wavelet features through multilevel wavelet transform (WT) and the convolutional network. The cross-modal images are divided into low-frequency and high-frequency parts through WT. DW-Net can adaptively extract the shared features from the low-frequency part and useful details from the high-frequency part, which can enhance the modality invariance and discrimination of features. Additionally, the multiresolution wavelet features contain multiscale information and contribute to improving the matching accuracy. Extensive experiments demonstrate the significant advantages in terms of the accuracy and robustness of DW-Net on cross-modal remote sensing image registration. DW-Net can increase the image patch matching accuracy by 3.7% and improve image registration probability by 12.1%. Moreover, DW-Net shows strong generalization performances from low resolution to high resolution and from optical– synthetic aperture radar to other cross-modal image registration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
刚刚
yangy115完成签到,获得积分10
3秒前
4秒前
7秒前
沈慧完成签到,获得积分20
10秒前
鳌小饭完成签到 ,获得积分10
10秒前
CC发布了新的文献求助10
13秒前
诚心不凡发布了新的文献求助10
15秒前
CC完成签到,获得积分10
20秒前
21秒前
Lily发布了新的文献求助10
25秒前
27秒前
tzy6665完成签到,获得积分10
27秒前
粗犷的灵松完成签到 ,获得积分10
30秒前
32秒前
sunshine应助ChenSSS采纳,获得10
37秒前
饱满语风完成签到 ,获得积分10
38秒前
陈强完成签到,获得积分10
39秒前
垚乐完成签到,获得积分10
40秒前
41秒前
轩辕书白完成签到,获得积分10
43秒前
美满的小蘑菇完成签到 ,获得积分10
48秒前
观自在完成签到 ,获得积分10
50秒前
小太阳完成签到 ,获得积分10
56秒前
57秒前
1分钟前
genomed举报芋圆粒求助涉嫌违规
1分钟前
大神水瓶座完成签到,获得积分10
1分钟前
36456657应助科研通管家采纳,获得10
1分钟前
贰鸟应助科研通管家采纳,获得20
1分钟前
1分钟前
张亚慧完成签到 ,获得积分10
1分钟前
zlx完成签到 ,获得积分10
1分钟前
dreamer完成签到 ,获得积分10
1分钟前
净心发布了新的文献求助50
1分钟前
overlood完成签到 ,获得积分10
1分钟前
Orange应助迅速的雨泽采纳,获得10
1分钟前
1分钟前
杰尼龟完成签到,获得积分10
1分钟前
momo完成签到,获得积分10
1分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Treatise on Estuarine and Coastal Science (Second Edition) Volume 3: Biogeochemical Cycling 2024 500
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3341917
求助须知:如何正确求助?哪些是违规求助? 2969256
关于积分的说明 8638010
捐赠科研通 2648930
什么是DOI,文献DOI怎么找? 1450469
科研通“疑难数据库(出版商)”最低求助积分说明 671917
邀请新用户注册赠送积分活动 660991