Efficient and Robust: A Cross-Modal Registration Deep Wavelet Learning Method for Remote Sensing Images

人工智能 计算机科学 小波 模式识别(心理学) 卷积神经网络 稳健性(进化) 判别式 深度学习 小波变换 情态动词 计算机视觉 图像配准 特征提取 特征(语言学) 匹配(统计) 图像(数学) 数学 哲学 统计 基因 化学 高分子化学 生物化学 语言学
作者
Dou Quan,Huiyuan Wei,Shuang Wang,Yi Li,Jocelyn Chanussot,Yanhe Guo,Biao Hou,Licheng Jiao
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 4739-4754 被引量:8
标识
DOI:10.1109/jstars.2023.3276409
摘要

Deep convolutional networks are powerful for local feature learning and have shown advantages in image matching and registration. However, the significant differences between cross-modal images increase the challenge of image registration. The deep network should extract modality-invariant features to identify the matching samples and discriminative features to separate the nonmatching samples. The deep network can extract features invariant to the image modality changes by multiple nonlinear mapping layers. However, it does not inevitably lose rich details and affect the discrimination of features, degrading registration performances. This article proposes a novel deep wavelet learning network (DW-Net) for local feature learning. It incorporates spectral information into deep convolutional features for improving cross-modal image matching and registration. Specifically, this article aims to learn the multiresolution wavelet features through multilevel wavelet transform (WT) and the convolutional network. The cross-modal images are divided into low-frequency and high-frequency parts through WT. DW-Net can adaptively extract the shared features from the low-frequency part and useful details from the high-frequency part, which can enhance the modality invariance and discrimination of features. Additionally, the multiresolution wavelet features contain multiscale information and contribute to improving the matching accuracy. Extensive experiments demonstrate the significant advantages in terms of the accuracy and robustness of DW-Net on cross-modal remote sensing image registration. DW-Net can increase the image patch matching accuracy by 3.7% and improve image registration probability by 12.1%. Moreover, DW-Net shows strong generalization performances from low resolution to high resolution and from optical– synthetic aperture radar to other cross-modal image registration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lam完成签到,获得积分10
刚刚
sgz666完成签到 ,获得积分10
1秒前
赘婿应助方圆几里采纳,获得30
1秒前
1秒前
qsxy发布了新的文献求助10
2秒前
3秒前
香蕉觅云应助Nalitesgerl采纳,获得10
3秒前
Agoni完成签到,获得积分10
3秒前
曾丹么么哒完成签到,获得积分10
3秒前
张张完成签到,获得积分10
4秒前
天天快乐应助speak采纳,获得10
4秒前
5秒前
5秒前
5秒前
6秒前
YHHHH应助果实采纳,获得20
7秒前
Rose发布了新的文献求助10
8秒前
8秒前
Alleria发布了新的文献求助10
9秒前
吹泡泡的红豆完成签到 ,获得积分10
9秒前
10秒前
感动的芷卉完成签到,获得积分10
10秒前
机智友蕊完成签到 ,获得积分10
11秒前
11秒前
12秒前
12秒前
THEEVE发布了新的文献求助10
12秒前
友好山菡完成签到,获得积分10
13秒前
舒适新梅完成签到,获得积分10
13秒前
谢慧发布了新的文献求助10
13秒前
dundun完成签到,获得积分10
13秒前
热心的乞发布了新的文献求助10
14秒前
14秒前
自由语柳完成签到,获得积分20
15秒前
15秒前
15秒前
orixero应助THEEVE采纳,获得10
16秒前
16秒前
17秒前
Akim应助感动的芷卉采纳,获得10
17秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961223
求助须知:如何正确求助?哪些是违规求助? 3507496
关于积分的说明 11136509
捐赠科研通 3239958
什么是DOI,文献DOI怎么找? 1790571
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803186