Using machine learning to predict outcomes following carotid endarterectomy

医学 布里氏评分 颈动脉内膜切除术 接收机工作特性 逻辑回归 机器学习 随机森林 冲程(发动机) 围手术期 外科 急诊医学 内科学 颈动脉 机械工程 计算机科学 工程类
作者
Ben Li,Derek Beaton,Naomi Eisenberg,Douglas S. Lee,Duminda N. Wijeysundera,Thomas F. Lindsay,Charles de Mestral,Muhammad Mamdani,Graham Roche-Nagle,Mohammed Al-Omran
出处
期刊:Journal of Vascular Surgery [Elsevier BV]
卷期号:78 (4): 973-987.e6
标识
DOI:10.1016/j.jvs.2023.05.024
摘要

Objective Prediction of outcomes following carotid endarterectomy (CEA) remains challenging, with a lack of standardized tools to guide perioperative management. We used machine learning (ML) to develop automated algorithms that predict outcomes following CEA. Methods The Vascular Quality Initiative (VQI) database was used to identify patients who underwent CEA between 2003 and 2022. We identified 71 potential predictor variables (features) from the index hospitalization (43 preoperative [demographic/clinical], 21 intraoperative [procedural], and 7 postoperative [in-hospital complications]). The primary outcome was stroke or death at 1 year following CEA. Our data were split into training (70%) and test (30%) sets. Using 10-fold cross-validation, we trained six ML models using preoperative features (Extreme Gradient Boosting [XGBoost], random forest, Naïve Bayes classifier, support vector machine, artificial neural network, and logistic regression). The primary model evaluation metric was area under the receiver operating characteristic curve (AUROC). After selecting the best performing algorithm, additional models were built using intra- and postoperative data. Model robustness was evaluated using calibration plots and Brier scores. Performance was assessed on subgroups based on age, sex, race, ethnicity, insurance status, symptom status, and urgency of surgery. Results Overall, 166,369 patients underwent CEA during the study period. In total, 7749 patients (4.7%) had the primary outcome of stroke or death at 1 year. Patients with an outcome were older with more comorbidities, had poorer functional status, and demonstrated higher risk anatomic features. They were also more likely to undergo intraoperative surgical re-exploration and have in-hospital complications. Our best performing prediction model at the preoperative stage was XGBoost, achieving an AUROC of 0.90 (95% confidence interval [CI], 0.89-0.91). In comparison, logistic regression had an AUROC of 0.65 (95% CI, 0.63-0.67), and existing tools in the literature demonstrate AUROCs ranging from 0.58 to 0.74. Our XGBoost models maintained excellent performance at the intra- and postoperative stages, with AUROCs of 0.90 (95% CI, 0.89-0.91) and 0.94 (95% CI, 0.93-0.95), respectively. Calibration plots showed good agreement between predicted and observed event probabilities with Brier scores of 0.15 (preoperative), 0.14 (intraoperative), and 0.11 (postoperative). Of the top 10 predictors, eight were preoperative features, including comorbidities, functional status, and previous procedures. Model performance remained robust on all subgroup analyses. Conclusions We developed ML models that accurately predict outcomes following CEA. Our algorithms perform better than logistic regression and existing tools, and therefore, have potential for important utility in guiding perioperative risk mitigation strategies to prevent adverse outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
猪猪hero完成签到,获得积分10
10秒前
12秒前
浮游应助guo采纳,获得10
13秒前
英吉利25发布了新的文献求助10
13秒前
hui发布了新的文献求助10
18秒前
学习要认真喽完成签到,获得积分10
19秒前
20秒前
西山菩提发布了新的文献求助200
21秒前
奥丁不言语完成签到 ,获得积分10
24秒前
义气凡阳完成签到,获得积分10
25秒前
LYriQue发布了新的文献求助10
29秒前
整齐的蜻蜓完成签到 ,获得积分10
34秒前
pluto应助guo采纳,获得10
37秒前
ZHANG完成签到 ,获得积分10
38秒前
42秒前
醉熏的菲鹰完成签到 ,获得积分10
42秒前
苏以禾完成签到 ,获得积分10
46秒前
star发布了新的文献求助10
48秒前
gdgd完成签到,获得积分10
48秒前
西弗勒斯麻完成签到,获得积分10
50秒前
哈鲤完成签到,获得积分10
51秒前
Tina完成签到 ,获得积分10
56秒前
guozizi完成签到,获得积分10
56秒前
徐自豪完成签到 ,获得积分10
57秒前
秦梭璋完成签到 ,获得积分10
1分钟前
小乙猪完成签到 ,获得积分0
1分钟前
guo完成签到,获得积分10
1分钟前
1分钟前
star完成签到,获得积分10
1分钟前
Lucas应助LYriQue采纳,获得10
1分钟前
lichanshen完成签到,获得积分10
1分钟前
boxi完成签到,获得积分10
1分钟前
冷艳的友瑶完成签到,获得积分10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
aldehyde应助科研通管家采纳,获得10
1分钟前
aldehyde应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304170
求助须知:如何正确求助?哪些是违规求助? 4450738
关于积分的说明 13849759
捐赠科研通 4337666
什么是DOI,文献DOI怎么找? 2381590
邀请新用户注册赠送积分活动 1376576
关于科研通互助平台的介绍 1343579