Using machine learning to predict outcomes following carotid endarterectomy

医学 布里氏评分 颈动脉内膜切除术 接收机工作特性 逻辑回归 机器学习 随机森林 冲程(发动机) 围手术期 外科 急诊医学 内科学 颈动脉 计算机科学 机械工程 工程类
作者
Ben Li,Derek Beaton,Naomi Eisenberg,Douglas S. Lee,Duminda N. Wijeysundera,Thomas F. Lindsay,Charles de Mestral,Muhammad Mamdani,Graham Roche-Nagle,Mohammed Al-Omran
出处
期刊:Journal of Vascular Surgery [Elsevier BV]
卷期号:78 (4): 973-987.e6
标识
DOI:10.1016/j.jvs.2023.05.024
摘要

Objective Prediction of outcomes following carotid endarterectomy (CEA) remains challenging, with a lack of standardized tools to guide perioperative management. We used machine learning (ML) to develop automated algorithms that predict outcomes following CEA. Methods The Vascular Quality Initiative (VQI) database was used to identify patients who underwent CEA between 2003 and 2022. We identified 71 potential predictor variables (features) from the index hospitalization (43 preoperative [demographic/clinical], 21 intraoperative [procedural], and 7 postoperative [in-hospital complications]). The primary outcome was stroke or death at 1 year following CEA. Our data were split into training (70%) and test (30%) sets. Using 10-fold cross-validation, we trained six ML models using preoperative features (Extreme Gradient Boosting [XGBoost], random forest, Naïve Bayes classifier, support vector machine, artificial neural network, and logistic regression). The primary model evaluation metric was area under the receiver operating characteristic curve (AUROC). After selecting the best performing algorithm, additional models were built using intra- and postoperative data. Model robustness was evaluated using calibration plots and Brier scores. Performance was assessed on subgroups based on age, sex, race, ethnicity, insurance status, symptom status, and urgency of surgery. Results Overall, 166,369 patients underwent CEA during the study period. In total, 7749 patients (4.7%) had the primary outcome of stroke or death at 1 year. Patients with an outcome were older with more comorbidities, had poorer functional status, and demonstrated higher risk anatomic features. They were also more likely to undergo intraoperative surgical re-exploration and have in-hospital complications. Our best performing prediction model at the preoperative stage was XGBoost, achieving an AUROC of 0.90 (95% confidence interval [CI], 0.89-0.91). In comparison, logistic regression had an AUROC of 0.65 (95% CI, 0.63-0.67), and existing tools in the literature demonstrate AUROCs ranging from 0.58 to 0.74. Our XGBoost models maintained excellent performance at the intra- and postoperative stages, with AUROCs of 0.90 (95% CI, 0.89-0.91) and 0.94 (95% CI, 0.93-0.95), respectively. Calibration plots showed good agreement between predicted and observed event probabilities with Brier scores of 0.15 (preoperative), 0.14 (intraoperative), and 0.11 (postoperative). Of the top 10 predictors, eight were preoperative features, including comorbidities, functional status, and previous procedures. Model performance remained robust on all subgroup analyses. Conclusions We developed ML models that accurately predict outcomes following CEA. Our algorithms perform better than logistic regression and existing tools, and therefore, have potential for important utility in guiding perioperative risk mitigation strategies to prevent adverse outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rondab应助启点采纳,获得10
3秒前
3秒前
彭于晏应助bxkrystal采纳,获得10
4秒前
hexy629完成签到,获得积分10
5秒前
5秒前
7秒前
万能图书馆应助xuxu采纳,获得10
7秒前
包容的世倌完成签到 ,获得积分10
8秒前
虾米发布了新的文献求助10
9秒前
李健应助plu采纳,获得30
9秒前
SciGPT应助anyilin采纳,获得10
10秒前
大方觅珍完成签到 ,获得积分10
11秒前
11秒前
乐乐应助zsg采纳,获得10
11秒前
Leach发布了新的文献求助10
12秒前
小豆芽完成签到,获得积分10
12秒前
12秒前
13秒前
重要元容完成签到,获得积分10
14秒前
美有姬完成签到,获得积分10
15秒前
金钱完成签到,获得积分10
16秒前
17秒前
Ziyi_Xu发布了新的文献求助10
18秒前
xiaojian_291发布了新的文献求助10
18秒前
19秒前
19秒前
文献直达完成签到,获得积分10
20秒前
打打应助Lily采纳,获得10
20秒前
21秒前
木木完成签到,获得积分10
21秒前
松鼠完成签到 ,获得积分10
23秒前
zsg发布了新的文献求助10
24秒前
didilucky完成签到,获得积分10
24秒前
Yana1311发布了新的文献求助10
25秒前
25秒前
Gaahung发布了新的文献求助30
26秒前
二九十二完成签到,获得积分10
26秒前
Coco发布了新的文献求助10
28秒前
orixero应助ZWGS采纳,获得10
29秒前
斯文败类应助momo采纳,获得10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988975
求助须知:如何正确求助?哪些是违规求助? 3531316
关于积分的说明 11253424
捐赠科研通 3269917
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882063
科研通“疑难数据库(出版商)”最低求助积分说明 809068