Using machine learning to predict outcomes following carotid endarterectomy

医学 布里氏评分 颈动脉内膜切除术 接收机工作特性 逻辑回归 机器学习 随机森林 冲程(发动机) 围手术期 外科 急诊医学 内科学 颈动脉 机械工程 计算机科学 工程类
作者
Ben Li,Derek Beaton,Naomi Eisenberg,Douglas S. Lee,Duminda N. Wijeysundera,Thomas F. Lindsay,Charles de Mestral,Muhammad Mamdani,Graham Roche-Nagle,Mohammed Al-Omran
出处
期刊:Journal of Vascular Surgery [Elsevier BV]
卷期号:78 (4): 973-987.e6
标识
DOI:10.1016/j.jvs.2023.05.024
摘要

Objective Prediction of outcomes following carotid endarterectomy (CEA) remains challenging, with a lack of standardized tools to guide perioperative management. We used machine learning (ML) to develop automated algorithms that predict outcomes following CEA. Methods The Vascular Quality Initiative (VQI) database was used to identify patients who underwent CEA between 2003 and 2022. We identified 71 potential predictor variables (features) from the index hospitalization (43 preoperative [demographic/clinical], 21 intraoperative [procedural], and 7 postoperative [in-hospital complications]). The primary outcome was stroke or death at 1 year following CEA. Our data were split into training (70%) and test (30%) sets. Using 10-fold cross-validation, we trained six ML models using preoperative features (Extreme Gradient Boosting [XGBoost], random forest, Naïve Bayes classifier, support vector machine, artificial neural network, and logistic regression). The primary model evaluation metric was area under the receiver operating characteristic curve (AUROC). After selecting the best performing algorithm, additional models were built using intra- and postoperative data. Model robustness was evaluated using calibration plots and Brier scores. Performance was assessed on subgroups based on age, sex, race, ethnicity, insurance status, symptom status, and urgency of surgery. Results Overall, 166,369 patients underwent CEA during the study period. In total, 7749 patients (4.7%) had the primary outcome of stroke or death at 1 year. Patients with an outcome were older with more comorbidities, had poorer functional status, and demonstrated higher risk anatomic features. They were also more likely to undergo intraoperative surgical re-exploration and have in-hospital complications. Our best performing prediction model at the preoperative stage was XGBoost, achieving an AUROC of 0.90 (95% confidence interval [CI], 0.89-0.91). In comparison, logistic regression had an AUROC of 0.65 (95% CI, 0.63-0.67), and existing tools in the literature demonstrate AUROCs ranging from 0.58 to 0.74. Our XGBoost models maintained excellent performance at the intra- and postoperative stages, with AUROCs of 0.90 (95% CI, 0.89-0.91) and 0.94 (95% CI, 0.93-0.95), respectively. Calibration plots showed good agreement between predicted and observed event probabilities with Brier scores of 0.15 (preoperative), 0.14 (intraoperative), and 0.11 (postoperative). Of the top 10 predictors, eight were preoperative features, including comorbidities, functional status, and previous procedures. Model performance remained robust on all subgroup analyses. Conclusions We developed ML models that accurately predict outcomes following CEA. Our algorithms perform better than logistic regression and existing tools, and therefore, have potential for important utility in guiding perioperative risk mitigation strategies to prevent adverse outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Darius发布了新的文献求助10
刚刚
刚刚
CodeCraft应助现代芷波采纳,获得10
刚刚
刚刚
YH发布了新的文献求助10
1秒前
sdf完成签到,获得积分20
3秒前
无问西东发布了新的文献求助10
3秒前
3秒前
lrz发布了新的文献求助10
3秒前
小芒果完成签到,获得积分10
4秒前
5秒前
瘦瘦彩虹完成签到,获得积分10
5秒前
Chiwen发布了新的文献求助10
5秒前
谦让寄容发布了新的文献求助10
5秒前
Painkiller_发布了新的文献求助10
5秒前
Gamera完成签到 ,获得积分10
8秒前
8秒前
核桃发布了新的文献求助10
9秒前
Zuguo发布了新的文献求助10
9秒前
无问西东完成签到,获得积分10
10秒前
老张水泥建材完成签到,获得积分10
11秒前
芊芊完成签到 ,获得积分10
11秒前
12秒前
jdp完成签到,获得积分10
12秒前
15秒前
sdf发布了新的文献求助10
16秒前
17秒前
啊印发布了新的文献求助10
20秒前
liu发布了新的文献求助10
20秒前
复杂斓发布了新的文献求助10
21秒前
左手树完成签到,获得积分10
22秒前
风趣雪卉完成签到 ,获得积分10
22秒前
Lucas应助Painkiller_采纳,获得10
22秒前
NN完成签到 ,获得积分10
23秒前
23秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
研友_VZG7GZ应助科研通管家采纳,获得10
25秒前
25秒前
思源应助科研通管家采纳,获得10
25秒前
Owen应助科研通管家采纳,获得10
25秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342574
求助须知:如何正确求助?哪些是违规求助? 4478451
关于积分的说明 13939383
捐赠科研通 4375015
什么是DOI,文献DOI怎么找? 2403911
邀请新用户注册赠送积分活动 1396509
关于科研通互助平台的介绍 1368648