Using machine learning to predict outcomes following carotid endarterectomy

医学 布里氏评分 颈动脉内膜切除术 接收机工作特性 逻辑回归 机器学习 随机森林 冲程(发动机) 围手术期 外科 急诊医学 内科学 颈动脉 计算机科学 机械工程 工程类
作者
Ben Li,Derek Beaton,Naomi Eisenberg,Douglas S. Lee,Duminda N. Wijeysundera,Thomas F. Lindsay,Charles de Mestral,Muhammad Mamdani,Graham Roche-Nagle,Mohammed Al-Omran
出处
期刊:Journal of Vascular Surgery [Elsevier BV]
卷期号:78 (4): 973-987.e6
标识
DOI:10.1016/j.jvs.2023.05.024
摘要

Objective Prediction of outcomes following carotid endarterectomy (CEA) remains challenging, with a lack of standardized tools to guide perioperative management. We used machine learning (ML) to develop automated algorithms that predict outcomes following CEA. Methods The Vascular Quality Initiative (VQI) database was used to identify patients who underwent CEA between 2003 and 2022. We identified 71 potential predictor variables (features) from the index hospitalization (43 preoperative [demographic/clinical], 21 intraoperative [procedural], and 7 postoperative [in-hospital complications]). The primary outcome was stroke or death at 1 year following CEA. Our data were split into training (70%) and test (30%) sets. Using 10-fold cross-validation, we trained six ML models using preoperative features (Extreme Gradient Boosting [XGBoost], random forest, Naïve Bayes classifier, support vector machine, artificial neural network, and logistic regression). The primary model evaluation metric was area under the receiver operating characteristic curve (AUROC). After selecting the best performing algorithm, additional models were built using intra- and postoperative data. Model robustness was evaluated using calibration plots and Brier scores. Performance was assessed on subgroups based on age, sex, race, ethnicity, insurance status, symptom status, and urgency of surgery. Results Overall, 166,369 patients underwent CEA during the study period. In total, 7749 patients (4.7%) had the primary outcome of stroke or death at 1 year. Patients with an outcome were older with more comorbidities, had poorer functional status, and demonstrated higher risk anatomic features. They were also more likely to undergo intraoperative surgical re-exploration and have in-hospital complications. Our best performing prediction model at the preoperative stage was XGBoost, achieving an AUROC of 0.90 (95% confidence interval [CI], 0.89-0.91). In comparison, logistic regression had an AUROC of 0.65 (95% CI, 0.63-0.67), and existing tools in the literature demonstrate AUROCs ranging from 0.58 to 0.74. Our XGBoost models maintained excellent performance at the intra- and postoperative stages, with AUROCs of 0.90 (95% CI, 0.89-0.91) and 0.94 (95% CI, 0.93-0.95), respectively. Calibration plots showed good agreement between predicted and observed event probabilities with Brier scores of 0.15 (preoperative), 0.14 (intraoperative), and 0.11 (postoperative). Of the top 10 predictors, eight were preoperative features, including comorbidities, functional status, and previous procedures. Model performance remained robust on all subgroup analyses. Conclusions We developed ML models that accurately predict outcomes following CEA. Our algorithms perform better than logistic regression and existing tools, and therefore, have potential for important utility in guiding perioperative risk mitigation strategies to prevent adverse outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aurora.H完成签到,获得积分10
1秒前
1秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
duckspy发布了新的文献求助10
4秒前
4秒前
4秒前
xiaowan完成签到,获得积分10
5秒前
Terry完成签到,获得积分10
6秒前
张张张哈哈哈完成签到,获得积分10
6秒前
Research完成签到 ,获得积分10
6秒前
称心采枫完成签到 ,获得积分0
7秒前
7秒前
新新新新新发顶刊完成签到 ,获得积分10
8秒前
L3完成签到,获得积分10
9秒前
我是科研小能手完成签到,获得积分10
9秒前
风中的小丸子完成签到,获得积分10
10秒前
10秒前
时尚俊驰发布了新的文献求助10
11秒前
11秒前
11秒前
Grin完成签到,获得积分10
12秒前
周周完成签到,获得积分20
12秒前
13秒前
liufan完成签到 ,获得积分10
15秒前
guitarist完成签到 ,获得积分10
15秒前
饮汽水完成签到,获得积分10
15秒前
15秒前
yoyo20012623完成签到,获得积分10
16秒前
伦语发布了新的文献求助10
16秒前
韵苑完成签到,获得积分10
18秒前
烟花应助人生如梦采纳,获得10
18秒前
饮汽水发布了新的文献求助10
19秒前
先一完成签到 ,获得积分10
19秒前
20秒前
careyzhou发布了新的文献求助10
20秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022