清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Using machine learning to predict outcomes following carotid endarterectomy

医学 布里氏评分 颈动脉内膜切除术 接收机工作特性 逻辑回归 机器学习 随机森林 冲程(发动机) 围手术期 外科 急诊医学 内科学 颈动脉 机械工程 计算机科学 工程类
作者
Ben Li,Derek Beaton,Naomi Eisenberg,Douglas S. Lee,Duminda N. Wijeysundera,Thomas F. Lindsay,Charles de Mestral,Muhammad Mamdani,Graham Roche-Nagle,Mohammed Al-Omran
出处
期刊:Journal of Vascular Surgery [Elsevier BV]
卷期号:78 (4): 973-987.e6
标识
DOI:10.1016/j.jvs.2023.05.024
摘要

Objective Prediction of outcomes following carotid endarterectomy (CEA) remains challenging, with a lack of standardized tools to guide perioperative management. We used machine learning (ML) to develop automated algorithms that predict outcomes following CEA. Methods The Vascular Quality Initiative (VQI) database was used to identify patients who underwent CEA between 2003 and 2022. We identified 71 potential predictor variables (features) from the index hospitalization (43 preoperative [demographic/clinical], 21 intraoperative [procedural], and 7 postoperative [in-hospital complications]). The primary outcome was stroke or death at 1 year following CEA. Our data were split into training (70%) and test (30%) sets. Using 10-fold cross-validation, we trained six ML models using preoperative features (Extreme Gradient Boosting [XGBoost], random forest, Naïve Bayes classifier, support vector machine, artificial neural network, and logistic regression). The primary model evaluation metric was area under the receiver operating characteristic curve (AUROC). After selecting the best performing algorithm, additional models were built using intra- and postoperative data. Model robustness was evaluated using calibration plots and Brier scores. Performance was assessed on subgroups based on age, sex, race, ethnicity, insurance status, symptom status, and urgency of surgery. Results Overall, 166,369 patients underwent CEA during the study period. In total, 7749 patients (4.7%) had the primary outcome of stroke or death at 1 year. Patients with an outcome were older with more comorbidities, had poorer functional status, and demonstrated higher risk anatomic features. They were also more likely to undergo intraoperative surgical re-exploration and have in-hospital complications. Our best performing prediction model at the preoperative stage was XGBoost, achieving an AUROC of 0.90 (95% confidence interval [CI], 0.89-0.91). In comparison, logistic regression had an AUROC of 0.65 (95% CI, 0.63-0.67), and existing tools in the literature demonstrate AUROCs ranging from 0.58 to 0.74. Our XGBoost models maintained excellent performance at the intra- and postoperative stages, with AUROCs of 0.90 (95% CI, 0.89-0.91) and 0.94 (95% CI, 0.93-0.95), respectively. Calibration plots showed good agreement between predicted and observed event probabilities with Brier scores of 0.15 (preoperative), 0.14 (intraoperative), and 0.11 (postoperative). Of the top 10 predictors, eight were preoperative features, including comorbidities, functional status, and previous procedures. Model performance remained robust on all subgroup analyses. Conclusions We developed ML models that accurately predict outcomes following CEA. Our algorithms perform better than logistic regression and existing tools, and therefore, have potential for important utility in guiding perioperative risk mitigation strategies to prevent adverse outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dong发布了新的文献求助10
15秒前
习月阳完成签到,获得积分10
46秒前
drhwang完成签到,获得积分10
59秒前
zyb完成签到 ,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
杨天天完成签到 ,获得积分10
1分钟前
yxdjzwx完成签到,获得积分10
1分钟前
1分钟前
yuxiaobolab发布了新的文献求助10
1分钟前
2分钟前
KKK发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
自然的含蕾完成签到 ,获得积分10
2分钟前
zzwwill完成签到,获得积分10
2分钟前
xiaowangwang完成签到 ,获得积分10
3分钟前
3分钟前
TTTTTT发布了新的文献求助10
3分钟前
dong发布了新的文献求助10
3分钟前
朴蒲萤荧完成签到,获得积分10
3分钟前
wujiwuhui完成签到 ,获得积分10
3分钟前
宇文雨文完成签到 ,获得积分10
4分钟前
笑对人生完成签到 ,获得积分10
4分钟前
冷傲迎梅完成签到 ,获得积分10
4分钟前
4分钟前
代代发布了新的文献求助10
4分钟前
代代完成签到,获得积分10
4分钟前
xue完成签到 ,获得积分10
5分钟前
慕青应助科研通管家采纳,获得10
5分钟前
fed完成签到 ,获得积分10
5分钟前
ww完成签到,获得积分10
6分钟前
胡国伦完成签到 ,获得积分10
6分钟前
clock完成签到 ,获得积分10
6分钟前
炳灿完成签到 ,获得积分10
6分钟前
future完成签到 ,获得积分10
7分钟前
dream完成签到 ,获得积分10
7分钟前
打打应助实验顺顺利利采纳,获得10
7分钟前
科研通AI5应助KKK采纳,获得30
7分钟前
7分钟前
KKK完成签到,获得积分20
7分钟前
V_I_G完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4984325
求助须知:如何正确求助?哪些是违规求助? 4235277
关于积分的说明 13189883
捐赠科研通 4027819
什么是DOI,文献DOI怎么找? 2203531
邀请新用户注册赠送积分活动 1215658
关于科研通互助平台的介绍 1133039