Using machine learning to predict outcomes following carotid endarterectomy

医学 布里氏评分 颈动脉内膜切除术 接收机工作特性 逻辑回归 机器学习 随机森林 冲程(发动机) 围手术期 外科 急诊医学 内科学 颈动脉 机械工程 计算机科学 工程类
作者
Ben Li,Derek Beaton,Naomi Eisenberg,Douglas S. Lee,Duminda N. Wijeysundera,Thomas F. Lindsay,Charles de Mestral,Muhammad Mamdani,Graham Roche-Nagle,Mohammed Al-Omran
出处
期刊:Journal of Vascular Surgery [Elsevier BV]
卷期号:78 (4): 973-987.e6
标识
DOI:10.1016/j.jvs.2023.05.024
摘要

Objective Prediction of outcomes following carotid endarterectomy (CEA) remains challenging, with a lack of standardized tools to guide perioperative management. We used machine learning (ML) to develop automated algorithms that predict outcomes following CEA. Methods The Vascular Quality Initiative (VQI) database was used to identify patients who underwent CEA between 2003 and 2022. We identified 71 potential predictor variables (features) from the index hospitalization (43 preoperative [demographic/clinical], 21 intraoperative [procedural], and 7 postoperative [in-hospital complications]). The primary outcome was stroke or death at 1 year following CEA. Our data were split into training (70%) and test (30%) sets. Using 10-fold cross-validation, we trained six ML models using preoperative features (Extreme Gradient Boosting [XGBoost], random forest, Naïve Bayes classifier, support vector machine, artificial neural network, and logistic regression). The primary model evaluation metric was area under the receiver operating characteristic curve (AUROC). After selecting the best performing algorithm, additional models were built using intra- and postoperative data. Model robustness was evaluated using calibration plots and Brier scores. Performance was assessed on subgroups based on age, sex, race, ethnicity, insurance status, symptom status, and urgency of surgery. Results Overall, 166,369 patients underwent CEA during the study period. In total, 7749 patients (4.7%) had the primary outcome of stroke or death at 1 year. Patients with an outcome were older with more comorbidities, had poorer functional status, and demonstrated higher risk anatomic features. They were also more likely to undergo intraoperative surgical re-exploration and have in-hospital complications. Our best performing prediction model at the preoperative stage was XGBoost, achieving an AUROC of 0.90 (95% confidence interval [CI], 0.89-0.91). In comparison, logistic regression had an AUROC of 0.65 (95% CI, 0.63-0.67), and existing tools in the literature demonstrate AUROCs ranging from 0.58 to 0.74. Our XGBoost models maintained excellent performance at the intra- and postoperative stages, with AUROCs of 0.90 (95% CI, 0.89-0.91) and 0.94 (95% CI, 0.93-0.95), respectively. Calibration plots showed good agreement between predicted and observed event probabilities with Brier scores of 0.15 (preoperative), 0.14 (intraoperative), and 0.11 (postoperative). Of the top 10 predictors, eight were preoperative features, including comorbidities, functional status, and previous procedures. Model performance remained robust on all subgroup analyses. Conclusions We developed ML models that accurately predict outcomes following CEA. Our algorithms perform better than logistic regression and existing tools, and therefore, have potential for important utility in guiding perioperative risk mitigation strategies to prevent adverse outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dr.向发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助150
2秒前
乔杰完成签到 ,获得积分10
5秒前
悠明夜月完成签到 ,获得积分10
6秒前
协奏曲完成签到 ,获得积分10
9秒前
知行合一完成签到 ,获得积分10
9秒前
firewood完成签到,获得积分10
11秒前
俏皮的老三完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助150
18秒前
骄阳完成签到 ,获得积分10
19秒前
小羊完成签到 ,获得积分10
20秒前
buerzi完成签到,获得积分10
22秒前
fabea完成签到,获得积分10
25秒前
27秒前
Dr.向完成签到,获得积分10
31秒前
虚心青梦完成签到 ,获得积分10
33秒前
ken131完成签到 ,获得积分0
33秒前
Crystal完成签到 ,获得积分10
36秒前
鱼鱼和石头完成签到 ,获得积分10
37秒前
tingalan应助科研通管家采纳,获得10
38秒前
科研通AI6应助科研通管家采纳,获得10
38秒前
科研通AI5应助科研通管家采纳,获得10
38秒前
38秒前
量子星尘发布了新的文献求助150
38秒前
李朝富完成签到,获得积分10
39秒前
执着可仁完成签到 ,获得积分10
39秒前
圈圈完成签到 ,获得积分10
40秒前
Dr.向发布了新的文献求助10
50秒前
153266916完成签到 ,获得积分10
51秒前
笨笨凡松完成签到 ,获得积分10
51秒前
eth完成签到 ,获得积分10
53秒前
上进完成签到 ,获得积分10
54秒前
量子星尘发布了新的文献求助150
56秒前
ECHO完成签到,获得积分10
57秒前
58秒前
alixy完成签到,获得积分10
59秒前
叁壶薏苡发布了新的文献求助10
1分钟前
qin1172001完成签到 ,获得积分10
1分钟前
qiancib202完成签到,获得积分10
1分钟前
迈克老狼完成签到 ,获得积分10
1分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5149954
求助须知:如何正确求助?哪些是违规求助? 4345878
关于积分的说明 13530982
捐赠科研通 4188371
什么是DOI,文献DOI怎么找? 2296822
邀请新用户注册赠送积分活动 1297250
关于科研通互助平台的介绍 1241612