BP-Net: Boundary and perfusion feature guided dual-modality ultrasound video analysis network for fibrous cap integrity assessment

计算机科学 人工智能 背景(考古学) 特征(语言学) 计算机视觉 模式识别(心理学) 语言学 生物 哲学 古生物学
作者
Leyin Li,Zhaoyu Hu,Yunqian Huang,Wenqian Zhu,Chengqian Zhao,Yuanyuan Wang,Man Chen,Jinhua Yu
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:107: 102246-102246 被引量:1
标识
DOI:10.1016/j.compmedimag.2023.102246
摘要

Ultrasonography is one of the main imaging methods for monitoring and diagnosing atherosclerosis due to its non-invasiveness and low-cost. Automatic differentiation of carotid plaque fibrous cap integrity by using multi-modal ultrasound videos has significant diagnostic and prognostic value for cardiovascular and cerebrovascular disease patients. However, the task faces several challenges, including high variation in plaque location and shape, the absence of analysis mechanism focusing on fibrous cap, the lack of effective mechanism to capture the relevance among multi-modal data for feature fusion and selection, etc. To overcome these challenges, we propose a new target boundary and perfusion feature guided video analysis network (BP-Net) based on conventional B-mode ultrasound and contrast-enhanced ultrasound videos for assessing the integrity of fibrous cap. Based on our previously proposed plaque auto-tracking network, in our BP-Net, we further introduce the plaque edge attention module and reverse mechanism to focus the dual video analysis on the fiber cap of plaques. Moreover, to fully explore the rich information on the fibrous cap and inside/outside of the plaque, we propose a feature fusion module for B-mode and contrast video to filter out the most valuable features for fibrous cap integrity assessment. Finally, multi-head convolution attention is proposed and embedded into transformer-based network, which captures semantic features and global context information to obtain accurate evaluation of fibrous caps integrity. The experimental results demonstrate that the proposed method has high accuracy and generalizability with an accuracy of 92.35% and an AUC of 0.935, which outperforms than the state-of-the-art deep learning based methods. A series of comprehensive ablation studies suggest the effectiveness of each proposed component and show great potential in clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搜集达人应助彳亍采纳,获得10
1秒前
合适太清发布了新的文献求助10
2秒前
3秒前
贰鸟举报求助违规成功
3秒前
starofjlu举报求助违规成功
3秒前
夜白举报求助违规成功
3秒前
3秒前
4秒前
4秒前
CHEN完成签到,获得积分10
5秒前
5秒前
小芒果发布了新的文献求助10
6秒前
6秒前
梓泽丘墟应助拼搏妙竹采纳,获得10
6秒前
123完成签到,获得积分10
7秒前
7秒前
流水忆落花完成签到,获得积分10
7秒前
8秒前
Lysine发布了新的文献求助10
8秒前
sykzx发布了新的文献求助30
8秒前
ding应助ch3oh采纳,获得30
9秒前
fu完成签到,获得积分10
9秒前
小龅牙吖完成签到,获得积分20
10秒前
11秒前
11秒前
肥大鸭完成签到,获得积分10
12秒前
12秒前
lllwww完成签到 ,获得积分10
12秒前
芒果布丁完成签到 ,获得积分10
12秒前
宜醉宜游宜睡应助zrq采纳,获得10
13秒前
英姑应助是豆荚采纳,获得10
13秒前
小清驴完成签到,获得积分20
14秒前
15秒前
15秒前
瘦瘦安白发布了新的文献求助10
16秒前
遥远的尧应助太渊采纳,获得10
16秒前
大个应助科研通管家采纳,获得10
17秒前
FashionBoy应助刘松采纳,获得10
17秒前
852应助科研通管家采纳,获得10
17秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160487
求助须知:如何正确求助?哪些是违规求助? 2811659
关于积分的说明 7892950
捐赠科研通 2470589
什么是DOI,文献DOI怎么找? 1315639
科研通“疑难数据库(出版商)”最低求助积分说明 630910
版权声明 602042