Hybrid deep neural network with dimension attention for state-of-health estimation of Lithium-ion Batteries

计算机科学 卷积神经网络 人工神经网络 荷电状态 人工智能 维数(图论) 原始数据 深度学习 电池(电) 模式识别(心理学) 功率(物理) 数学 量子力学 物理 程序设计语言 纯数学
作者
Xinyuan Bao,Liping Chen,António M. Lopes,Xin Li,Siqiang Xie,Penghua Li,YangQuan Chen
出处
期刊:Energy [Elsevier]
卷期号:278: 127734-127734 被引量:22
标识
DOI:10.1016/j.energy.2023.127734
摘要

Lithium-ion batteries (LIBs) are widely used and became the main energy storage medium for many devices. Accurate estimation of LIBs state-of-health (SOH) is crucial for safe and reliable operation of devices. This study designs an end-to-end multi-battery shared hybrid neural network (NN) prognostic framework that combines a convolutional neural network (CNN), a multi-layer variant long-short-term memory (VLSTM) NN and a dimensional attention mechanism (CNN-VLSTM-DA) to SOH estimation for LIBs. First, feature extraction and selection on the raw input data are performed by using a CNN. Second, a suitable VLSTM is designed. The network adds a "peephole connection" to the forget gate and output gate, respectively, which enhances the network's ability to distinguish subtle features between input sequences. Besides, the forget gate and the input gate are coupled, so that, together, they determine the information that needs to be forgotten and the new data that needs to be added. Then, the output data of the CNN layer are fed into a multi-layer VLSTM NN to further capture the temporal correlation of these data. Finally, the attention mechanism is applied to the output of the VLSTM, to assign different weights to the features of each dimension and to give the prediction results. Several experiments are carried out on three datasets from NASA, CALCE and Oxford. These include full charge/discharge data, charge/discharge data in different SOC ranges, and non-fixed discharge current data. The results verify the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
良辰应助缺粥采纳,获得10
刚刚
脑洞疼应助Otto Curious采纳,获得20
刚刚
诺之应助认真的小懒虫采纳,获得10
刚刚
1秒前
2秒前
田様应助活力的曼柔采纳,获得10
2秒前
3秒前
3秒前
4秒前
suezam发布了新的文献求助10
4秒前
5秒前
隐形曼青应助科研混子采纳,获得10
5秒前
小马甲应助黑小虎采纳,获得10
5秒前
科研通AI5应助古风采纳,获得10
5秒前
doctor_s发布了新的文献求助10
5秒前
共享精神应助落后傲柏采纳,获得10
6秒前
stuffmatter发布了新的文献求助10
6秒前
可爱的函函应助林莹采纳,获得10
6秒前
6秒前
rylynn发布了新的文献求助10
8秒前
大个应助douning采纳,获得10
9秒前
10秒前
三年半完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
12秒前
魔幻的从阳完成签到,获得积分10
12秒前
12秒前
汉堡包应助SDXX采纳,获得10
12秒前
852应助默默采纳,获得10
13秒前
13秒前
和谐的蜡烛完成签到,获得积分10
14秒前
kingwill应助卡乐瑞咩吹可采纳,获得20
14秒前
15秒前
15秒前
16秒前
阿斌完成签到 ,获得积分10
16秒前
17秒前
aurora完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543600
求助须知:如何正确求助?哪些是违规求助? 3120949
关于积分的说明 9344906
捐赠科研通 2818967
什么是DOI,文献DOI怎么找? 1549876
邀请新用户注册赠送积分活动 722316
科研通“疑难数据库(出版商)”最低求助积分说明 713126