亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hybrid deep neural network with dimension attention for state-of-health estimation of Lithium-ion Batteries

计算机科学 卷积神经网络 人工神经网络 荷电状态 人工智能 维数(图论) 原始数据 深度学习 电池(电) 模式识别(心理学) 功率(物理) 数学 量子力学 物理 程序设计语言 纯数学
作者
Xinyuan Bao,Liping Chen,António M. Lopes,Xin Li,Siqiang Xie,Penghua Li,YangQuan Chen
出处
期刊:Energy [Elsevier]
卷期号:278: 127734-127734 被引量:34
标识
DOI:10.1016/j.energy.2023.127734
摘要

Lithium-ion batteries (LIBs) are widely used and became the main energy storage medium for many devices. Accurate estimation of LIBs state-of-health (SOH) is crucial for safe and reliable operation of devices. This study designs an end-to-end multi-battery shared hybrid neural network (NN) prognostic framework that combines a convolutional neural network (CNN), a multi-layer variant long-short-term memory (VLSTM) NN and a dimensional attention mechanism (CNN-VLSTM-DA) to SOH estimation for LIBs. First, feature extraction and selection on the raw input data are performed by using a CNN. Second, a suitable VLSTM is designed. The network adds a "peephole connection" to the forget gate and output gate, respectively, which enhances the network's ability to distinguish subtle features between input sequences. Besides, the forget gate and the input gate are coupled, so that, together, they determine the information that needs to be forgotten and the new data that needs to be added. Then, the output data of the CNN layer are fed into a multi-layer VLSTM NN to further capture the temporal correlation of these data. Finally, the attention mechanism is applied to the output of the VLSTM, to assign different weights to the features of each dimension and to give the prediction results. Several experiments are carried out on three datasets from NASA, CALCE and Oxford. These include full charge/discharge data, charge/discharge data in different SOC ranges, and non-fixed discharge current data. The results verify the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风景园林发布了新的文献求助10
刚刚
SciGPT应助XX采纳,获得10
2秒前
世良发布了新的文献求助10
2秒前
嘤嘤怪完成签到,获得积分10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
ceeray23应助科研通管家采纳,获得10
6秒前
elliotzzz应助科研通管家采纳,获得10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
7秒前
19秒前
zh发布了新的文献求助10
23秒前
33秒前
真实的瑾瑜完成签到 ,获得积分10
37秒前
YNHN发布了新的文献求助10
38秒前
茄子完成签到,获得积分10
45秒前
科研通AI6应助YNHN采纳,获得10
46秒前
科研通AI6应助喷火球采纳,获得10
54秒前
传奇3应助茄子采纳,获得10
58秒前
VDC发布了新的文献求助10
1分钟前
田様应助浪里白条采纳,获得10
1分钟前
1分钟前
1分钟前
科研小新发布了新的文献求助10
1分钟前
小圆发布了新的文献求助10
1分钟前
1分钟前
李爱国应助科研小新采纳,获得10
1分钟前
Amber发布了新的文献求助10
1分钟前
1分钟前
1分钟前
月月发布了新的文献求助10
1分钟前
Anlocia完成签到 ,获得积分10
1分钟前
XX发布了新的文献求助10
1分钟前
ktw完成签到,获得积分10
1分钟前
Youy完成签到 ,获得积分10
1分钟前
小池完成签到,获得积分10
1分钟前
世良发布了新的文献求助10
2分钟前
月月完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650695
求助须知:如何正确求助?哪些是违规求助? 4781473
关于积分的说明 15052510
捐赠科研通 4809531
什么是DOI,文献DOI怎么找? 2572352
邀请新用户注册赠送积分活动 1528481
关于科研通互助平台的介绍 1487362