MSGNN-DTA: Multi-Scale Topological Feature Fusion Based on Graph Neural Networks for Drug–Target Binding Affinity Prediction

计算机科学 人工智能 图形 药物靶点 特征(语言学) 融合 模式识别(心理学) 人工神经网络 计算生物学 拓扑(电路) 数学 理论计算机科学 化学 组合数学 生物 哲学 生物化学 语言学
作者
Shudong Wang,X. Song,Yuanyuan Zhang,Kuijie Zhang,Yingye Liu,Chuanru Ren,Shanchen Pang
出处
期刊:International Journal of Molecular Sciences [Multidisciplinary Digital Publishing Institute]
卷期号:24 (9): 8326-8326 被引量:7
标识
DOI:10.3390/ijms24098326
摘要

The accurate prediction of drug-target binding affinity (DTA) is an essential step in drug discovery and drug repositioning. Although deep learning methods have been widely adopted for DTA prediction, the complexity of extracting drug and target protein features hampers the accuracy of these predictions. In this study, we propose a novel model for DTA prediction named MSGNN-DTA, which leverages a fused multi-scale topological feature approach based on graph neural networks (GNNs). To address the challenge of accurately extracting drug and target protein features, we introduce a gated skip-connection mechanism during the feature learning process to fuse multi-scale topological features, resulting in information-rich representations of drugs and proteins. Our approach constructs drug atom graphs, motif graphs, and weighted protein graphs to fully extract topological information and provide a comprehensive understanding of underlying molecular interactions from multiple perspectives. Experimental results on two benchmark datasets demonstrate that MSGNN-DTA outperforms the state-of-the-art models in all evaluation metrics, showcasing the effectiveness of the proposed approach. Moreover, the study conducts a case study based on already FDA-approved drugs in the DrugBank dataset to highlight the potential of the MSGNN-DTA framework in identifying drug candidates for specific targets, which could accelerate the process of virtual screening and drug repositioning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助mk91采纳,获得10
2秒前
完美的流沙完成签到,获得积分10
2秒前
FashionBoy应助土豆侠采纳,获得10
3秒前
李云龙发布了新的文献求助10
4秒前
zhjwu完成签到,获得积分10
4秒前
5秒前
Hello应助麦子采纳,获得10
5秒前
fhhkckk3完成签到,获得积分10
5秒前
头头完成签到,获得积分10
5秒前
友好的小鸭子完成签到,获得积分10
6秒前
默认用户名完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
10秒前
10秒前
11秒前
vousme发布了新的文献求助10
11秒前
12秒前
12秒前
yuriy完成签到,获得积分10
13秒前
lan发布了新的文献求助10
14秒前
14秒前
DijiaXu应助PL采纳,获得10
15秒前
Chocolate001发布了新的文献求助10
15秒前
CR7应助stern采纳,获得20
16秒前
16秒前
海岸发布了新的文献求助10
16秒前
弄香完成签到,获得积分10
16秒前
机智幻嫣发布了新的文献求助10
16秒前
CodeCraft应助allton采纳,获得10
17秒前
健忘芷珊完成签到,获得积分20
17秒前
GOAT发布了新的文献求助10
18秒前
土豆侠发布了新的文献求助10
19秒前
Hello应助洋芋锅巴采纳,获得10
20秒前
6666发布了新的文献求助10
21秒前
22秒前
22秒前
SciGPT应助淡淡嫣采纳,获得10
22秒前
科研通AI2S应助海岸采纳,获得10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998784
求助须知:如何正确求助?哪些是违规求助? 3538262
关于积分的说明 11273791
捐赠科研通 3277260
什么是DOI,文献DOI怎么找? 1807481
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075