MSGNN-DTA: Multi-Scale Topological Feature Fusion Based on Graph Neural Networks for Drug–Target Binding Affinity Prediction

计算机科学 人工智能 图形 药物靶点 特征(语言学) 融合 模式识别(心理学) 人工神经网络 计算生物学 拓扑(电路) 数学 理论计算机科学 化学 组合数学 生物 哲学 生物化学 语言学
作者
Shudong Wang,X. Song,Yuanyuan Zhang,Kuijie Zhang,Yingye Liu,Chuanru Ren,Shanchen Pang
出处
期刊:International Journal of Molecular Sciences [MDPI AG]
卷期号:24 (9): 8326-8326 被引量:7
标识
DOI:10.3390/ijms24098326
摘要

The accurate prediction of drug-target binding affinity (DTA) is an essential step in drug discovery and drug repositioning. Although deep learning methods have been widely adopted for DTA prediction, the complexity of extracting drug and target protein features hampers the accuracy of these predictions. In this study, we propose a novel model for DTA prediction named MSGNN-DTA, which leverages a fused multi-scale topological feature approach based on graph neural networks (GNNs). To address the challenge of accurately extracting drug and target protein features, we introduce a gated skip-connection mechanism during the feature learning process to fuse multi-scale topological features, resulting in information-rich representations of drugs and proteins. Our approach constructs drug atom graphs, motif graphs, and weighted protein graphs to fully extract topological information and provide a comprehensive understanding of underlying molecular interactions from multiple perspectives. Experimental results on two benchmark datasets demonstrate that MSGNN-DTA outperforms the state-of-the-art models in all evaluation metrics, showcasing the effectiveness of the proposed approach. Moreover, the study conducts a case study based on already FDA-approved drugs in the DrugBank dataset to highlight the potential of the MSGNN-DTA framework in identifying drug candidates for specific targets, which could accelerate the process of virtual screening and drug repositioning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助hfy采纳,获得10
刚刚
大模型应助能量球采纳,获得10
1秒前
搜集达人应助风蓝采纳,获得10
1秒前
1秒前
今后应助qifengle采纳,获得10
1秒前
Zayro完成签到,获得积分10
3秒前
3秒前
蓝雨发布了新的文献求助10
3秒前
隐形曼青应助aaa采纳,获得10
5秒前
5秒前
领导范儿应助zzzkyt采纳,获得10
5秒前
5秒前
asdfg应助fff采纳,获得10
6秒前
深情安青应助乌禅采纳,获得10
7秒前
田様应助小蒋采纳,获得10
8秒前
兔兔不睡觉完成签到 ,获得积分10
9秒前
窝瓜顶呱呱完成签到,获得积分10
10秒前
777完成签到,获得积分10
11秒前
能量球发布了新的文献求助10
12秒前
12秒前
华仔应助科研通管家采纳,获得10
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
邓佳鑫Alan应助科研通管家采纳,获得10
13秒前
邓佳鑫Alan应助科研通管家采纳,获得10
13秒前
Jasper应助科研通管家采纳,获得10
13秒前
邓佳鑫Alan应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得10
13秒前
13秒前
打打应助科研通管家采纳,获得10
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
Hello应助做实验的林黛玉采纳,获得10
16秒前
zzzkyt发布了新的文献求助10
17秒前
17秒前
爆米花应助tynuxu采纳,获得10
19秒前
伊凡完成签到,获得积分10
21秒前
轻松小之发布了新的文献求助10
21秒前
兔兔要睡觉完成签到 ,获得积分10
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Analytical Model of Threshold Voltage for Narrow Width Metal Oxide Semiconductor Field Effect Transistors 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310425
求助须知:如何正确求助?哪些是违规求助? 2943334
关于积分的说明 8513915
捐赠科研通 2618566
什么是DOI,文献DOI怎么找? 1431182
科研通“疑难数据库(出版商)”最低求助积分说明 664398
邀请新用户注册赠送积分活动 649599