Threatening Patch Attacks on Object Detection in Optical Remote Sensing Images

计算机科学 跳跃式监视 目标检测 对象(语法) 光学(聚焦) 功能(生物学) 探测器 脆弱性(计算) 人工智能 遮罩(插图) 遥感 计算机视觉 模式识别(心理学) 计算机安全 地质学 物理 电信 艺术 视觉艺术 光学 生物 进化生物学
作者
Xuxiang Sun,Gong Cheng,Lei Pei,Hongda Li,Junwei Han
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-10 被引量:32
标识
DOI:10.1109/tgrs.2023.3273287
摘要

Advanced Patch Attacks (PAs) on object detection in natural images have pointed out the great safety vulnerability in methods based on deep neural networks. However, little attention has been paid to this topic in Optical Remote Sensing Images (O-RSIs). To this end, we focus on this research, i.e., PAs on object detection in O-RSIs, and propose a more Threatening PA without the scarification of the visual quality, dubbed TPA. Specifically, to address the problem of inconsistency between local and global landscapes in existing patch selection schemes, we propose leveraging the First-Order Difference (FOD) of the objective function before and after masking to select the sub-patches to be attacked. Further, considering the problem of gradient inundation when applying existing coordinate-based loss to PAs directly, we design an IoU-based objective function specific for PAs, dubbed Bounding box Drifting Loss (BDL), which pushes the detected bounding boxes far from the initial ones until there are no intersections between them. Finally, on two widely used benchmarks, i.e., DIOR and DOTA, comprehensive evaluations of our TPA with four typical detectors (Faster R-CNN, FCOS, RetinaNet, and YOLO-v4) witness its remarkable effectiveness. To the best of our knowledge, this is the first attempt to study the PAs on object detection in O-RSIs, and we hope this work can get our readers interested in studying this topic.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
丘比特应助Rui采纳,获得10
刚刚
Yannis完成签到 ,获得积分10
刚刚
1秒前
12345完成签到,获得积分10
1秒前
1秒前
1秒前
rrrrrrry发布了新的文献求助10
2秒前
2秒前
Z丶发布了新的文献求助10
2秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
今后应助艾丽采纳,获得10
4秒前
5秒前
情怀应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得30
5秒前
5秒前
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
zhonglv7应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助眠羊采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
6秒前
zhonglv7应助科研通管家采纳,获得10
6秒前
星辰大海应助ZZP27采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
今后应助科研通管家采纳,获得10
6秒前
6秒前
研友_VZG7GZ应助科研通管家采纳,获得30
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720392
求助须知:如何正确求助?哪些是违规求助? 5259964
关于积分的说明 15291027
捐赠科研通 4869813
什么是DOI,文献DOI怎么找? 2615036
邀请新用户注册赠送积分活动 1565022
关于科研通互助平台的介绍 1522160