Threatening Patch Attacks on Object Detection in Optical Remote Sensing Images

计算机科学 跳跃式监视 目标检测 对象(语法) 光学(聚焦) 功能(生物学) 探测器 脆弱性(计算) 人工智能 遮罩(插图) 遥感 计算机视觉 模式识别(心理学) 计算机安全 地质学 物理 电信 光学 生物 进化生物学 艺术 视觉艺术
作者
Xuxiang Sun,Gong Cheng,Lei Pei,Hongda Li,Junwei Han
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-10 被引量:32
标识
DOI:10.1109/tgrs.2023.3273287
摘要

Advanced Patch Attacks (PAs) on object detection in natural images have pointed out the great safety vulnerability in methods based on deep neural networks. However, little attention has been paid to this topic in Optical Remote Sensing Images (O-RSIs). To this end, we focus on this research, i.e., PAs on object detection in O-RSIs, and propose a more Threatening PA without the scarification of the visual quality, dubbed TPA. Specifically, to address the problem of inconsistency between local and global landscapes in existing patch selection schemes, we propose leveraging the First-Order Difference (FOD) of the objective function before and after masking to select the sub-patches to be attacked. Further, considering the problem of gradient inundation when applying existing coordinate-based loss to PAs directly, we design an IoU-based objective function specific for PAs, dubbed Bounding box Drifting Loss (BDL), which pushes the detected bounding boxes far from the initial ones until there are no intersections between them. Finally, on two widely used benchmarks, i.e., DIOR and DOTA, comprehensive evaluations of our TPA with four typical detectors (Faster R-CNN, FCOS, RetinaNet, and YOLO-v4) witness its remarkable effectiveness. To the best of our knowledge, this is the first attempt to study the PAs on object detection in O-RSIs, and we hope this work can get our readers interested in studying this topic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ultraman完成签到,获得积分10
刚刚
王宁发布了新的文献求助10
刚刚
十四完成签到 ,获得积分10
1秒前
LLL发布了新的文献求助10
1秒前
1秒前
开花开花发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
calm发布了新的文献求助10
2秒前
pluto应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
yar应助科研通管家采纳,获得10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
kingwill应助科研通管家采纳,获得20
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
musejie应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
4秒前
balabala发布了新的文献求助10
4秒前
4秒前
Chandler完成签到,获得积分10
4秒前
pluto应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
啦啦啦发布了新的文献求助10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
summer应助科研通管家采纳,获得10
4秒前
kingwill应助科研通管家采纳,获得20
5秒前
古往今来应助科研通管家采纳,获得20
5秒前
打打应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得30
5秒前
5秒前
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620