热导率
热传导
材料科学
铝
热的
热阻
冶金
复合材料
热力学
物理
作者
Ailin Zhang,Yanxiang Li
出处
期刊:Materials
[MDPI AG]
日期:2023-04-08
卷期号:16 (8): 2972-2972
被引量:56
摘要
Aluminum alloys have been extensively used as heatproof and heat-dissipation components in automotive and communication industries, and the demand for aluminum alloys with higher thermal conductivity is increasing. Therefore, this review focuses on the thermal conductivity of aluminum alloys. First, we formulate the theory of thermal conduction of metals and effective medium theory, and then analyze the effect of alloying elements, secondary phases, and temperature on the thermal conductivity of aluminum alloys. Alloying elements are the most crucial factor, whose species, existing states, and mutual interactions significantly affect the thermal conductivity of aluminum. Alloying elements in a solid solution weaken the thermal conductivity of aluminum more dramatically than those in the precipitated state. The characteristics and morphology of secondary phases also affect thermal conductivity. Temperature also affects thermal conductivity by influencing the thermal conduction of electrons and phonons in aluminum alloys. Furthermore, recent studies on the effects of casting, heat treatment, and AM processes on the thermal conductivity of aluminum alloys are summarized, in which processes mainly affect thermal conductivity by varying existing states of alloying elements and the morphology of secondary phases. These analyses and summaries will further promote the industrial design and development of aluminum alloys with high thermal conductivity.
科研通智能强力驱动
Strongly Powered by AbleSci AI