Towards dropout training for convolutional neural networks

人工神经网络 培训(气象学) 模式识别(心理学) 学习迁移 深层神经网络 任务(项目管理) 卷积(计算机科学)
作者
Haibing Wu,Xiaodong Gu
出处
期刊:Neural Networks [Elsevier]
卷期号:71: 1-10 被引量:212
标识
DOI:10.1016/j.neunet.2015.07.007
摘要

Recently, dropout has seen increasing use in deep learning. For deep convolutional neural networks, dropout is known to work well in fully-connected layers. However, its effect in convolutional and pooling layers is still not clear. This paper demonstrates that max-pooling dropout is equivalent to randomly picking activation based on a multinomial distribution at training time. In light of this insight, we advocate employing our proposed probabilistic weighted pooling, instead of commonly used max-pooling, to act as model averaging at test time. Empirical evidence validates the superiority of probabilistic weighted pooling. We also empirically show that the effect of convolutional dropout is not trivial, despite the dramatically reduced possibility of over-fitting due to the convolutional architecture. Elaborately designing dropout training simultaneously in max-pooling and fully-connected layers, we achieve state-of-the-art performance on MNIST, and very competitive results on CIFAR-10 and CIFAR-100, relative to other approaches without data augmentation. Finally, we compare max-pooling dropout and stochastic pooling, both of which introduce stochasticity based on multinomial distributions at pooling stage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪白小蜜蜂完成签到,获得积分10
1秒前
1秒前
1秒前
天天快乐应助玄一采纳,获得10
1秒前
3秒前
舒一一发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
bai完成签到 ,获得积分10
3秒前
等待凡英完成签到,获得积分10
4秒前
安静的荧完成签到,获得积分10
5秒前
doudou发布了新的文献求助10
5秒前
6秒前
魔幻的宫苴完成签到,获得积分20
6秒前
爆米花应助Hibiscus95采纳,获得10
6秒前
xclpp发布了新的文献求助10
8秒前
9秒前
等待凡英发布了新的文献求助10
9秒前
蓝桉完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
茶荼完成签到,获得积分10
12秒前
Uranus完成签到,获得积分10
13秒前
13秒前
研友_VZG7GZ应助One采纳,获得10
13秒前
丰富靖琪完成签到 ,获得积分10
14秒前
wanci应助lixi采纳,获得10
15秒前
汤圆发布了新的文献求助10
15秒前
15秒前
Uranus发布了新的文献求助10
16秒前
所所应助Youlu采纳,获得10
16秒前
靓丽三德应助读书的时候采纳,获得10
16秒前
17秒前
王小雨发布了新的文献求助10
17秒前
17秒前
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720392
求助须知:如何正确求助?哪些是违规求助? 5259964
关于积分的说明 15291027
捐赠科研通 4869813
什么是DOI,文献DOI怎么找? 2615036
邀请新用户注册赠送积分活动 1565022
关于科研通互助平台的介绍 1522160