Towards dropout training for convolutional neural networks

人工神经网络 培训(气象学) 模式识别(心理学) 学习迁移 深层神经网络 任务(项目管理) 卷积(计算机科学)
作者
Haibing Wu,Xiaodong Gu
出处
期刊:Neural Networks [Elsevier]
卷期号:71: 1-10 被引量:212
标识
DOI:10.1016/j.neunet.2015.07.007
摘要

Recently, dropout has seen increasing use in deep learning. For deep convolutional neural networks, dropout is known to work well in fully-connected layers. However, its effect in convolutional and pooling layers is still not clear. This paper demonstrates that max-pooling dropout is equivalent to randomly picking activation based on a multinomial distribution at training time. In light of this insight, we advocate employing our proposed probabilistic weighted pooling, instead of commonly used max-pooling, to act as model averaging at test time. Empirical evidence validates the superiority of probabilistic weighted pooling. We also empirically show that the effect of convolutional dropout is not trivial, despite the dramatically reduced possibility of over-fitting due to the convolutional architecture. Elaborately designing dropout training simultaneously in max-pooling and fully-connected layers, we achieve state-of-the-art performance on MNIST, and very competitive results on CIFAR-10 and CIFAR-100, relative to other approaches without data augmentation. Finally, we compare max-pooling dropout and stochastic pooling, both of which introduce stochasticity based on multinomial distributions at pooling stage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FFF发布了新的文献求助10
刚刚
李小胖发布了新的文献求助20
刚刚
李健应助故意的绿竹采纳,获得10
刚刚
勤恳的断秋完成签到 ,获得积分10
1秒前
VDC发布了新的文献求助10
1秒前
1秒前
jasmine970000发布了新的文献求助100
1秒前
酷波er应助camellia采纳,获得10
2秒前
Zoe发布了新的文献求助10
2秒前
2秒前
2秒前
啊实打实完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
参上完成签到,获得积分10
5秒前
mingjie完成签到,获得积分10
5秒前
yam001完成签到,获得积分10
5秒前
aaaaa发布了新的文献求助10
5秒前
6秒前
牧紫菱完成签到,获得积分10
6秒前
7秒前
研友_RLN0vZ发布了新的文献求助10
7秒前
7秒前
7秒前
神勇的雅香应助001采纳,获得10
8秒前
研友_V8RDYn完成签到,获得积分10
8秒前
zzznznnn发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
FFFFFFF应助晓军采纳,获得10
11秒前
wanci应助艺玲采纳,获得10
11秒前
jfc完成签到 ,获得积分10
11秒前
香蕉觅云应助月白采纳,获得10
11秒前
思源应助mmx采纳,获得10
11秒前
Diaory2023完成签到 ,获得积分0
11秒前
雪小岳完成签到,获得积分10
12秒前
李小明完成签到,获得积分10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762