Towards dropout training for convolutional neural networks

人工神经网络 培训(气象学) 模式识别(心理学) 学习迁移 深层神经网络 任务(项目管理) 卷积(计算机科学)
作者
Haibing Wu,Xiaodong Gu
出处
期刊:Neural Networks [Elsevier]
卷期号:71: 1-10 被引量:212
标识
DOI:10.1016/j.neunet.2015.07.007
摘要

Recently, dropout has seen increasing use in deep learning. For deep convolutional neural networks, dropout is known to work well in fully-connected layers. However, its effect in convolutional and pooling layers is still not clear. This paper demonstrates that max-pooling dropout is equivalent to randomly picking activation based on a multinomial distribution at training time. In light of this insight, we advocate employing our proposed probabilistic weighted pooling, instead of commonly used max-pooling, to act as model averaging at test time. Empirical evidence validates the superiority of probabilistic weighted pooling. We also empirically show that the effect of convolutional dropout is not trivial, despite the dramatically reduced possibility of over-fitting due to the convolutional architecture. Elaborately designing dropout training simultaneously in max-pooling and fully-connected layers, we achieve state-of-the-art performance on MNIST, and very competitive results on CIFAR-10 and CIFAR-100, relative to other approaches without data augmentation. Finally, we compare max-pooling dropout and stochastic pooling, both of which introduce stochasticity based on multinomial distributions at pooling stage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
隐形曼青应助lmz采纳,获得10
1秒前
百事可爱完成签到 ,获得积分10
1秒前
wanghuan完成签到,获得积分10
3秒前
4秒前
幸运星发布了新的文献求助10
4秒前
蓝天发布了新的文献求助10
4秒前
KYT2025发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
Zhaowx发布了新的文献求助10
6秒前
90完成签到,获得积分20
6秒前
今后应助WWTWM采纳,获得10
6秒前
聪明的半青完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
漂流的飞星完成签到,获得积分10
7秒前
8秒前
杨倩发布了新的文献求助10
9秒前
9秒前
10秒前
bxdrl发布了新的文献求助10
10秒前
wang发布了新的文献求助10
11秒前
烟花应助诚心代芙采纳,获得10
12秒前
12秒前
传奇3应助lhlhl采纳,获得10
12秒前
13秒前
13秒前
媛肖完成签到 ,获得积分10
14秒前
14秒前
Aypnia完成签到,获得积分10
15秒前
星辰大海应助趣味生煎采纳,获得10
15秒前
SciGPT应助jason采纳,获得10
15秒前
bxdrl完成签到,获得积分20
16秒前
呐呐呐发布了新的文献求助20
16秒前
Orange应助阿豪采纳,获得10
16秒前
勤奋的野狼完成签到,获得积分10
17秒前
Aypnia发布了新的文献求助10
17秒前
完美世界应助可靠的寒风采纳,获得10
17秒前
谷云发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649011
求助须知:如何正确求助?哪些是违规求助? 4777097
关于积分的说明 15046363
捐赠科研通 4807843
什么是DOI,文献DOI怎么找? 2571160
邀请新用户注册赠送积分活动 1527756
关于科研通互助平台的介绍 1486683