Towards dropout training for convolutional neural networks

人工神经网络 培训(气象学) 模式识别(心理学) 学习迁移 深层神经网络 任务(项目管理) 卷积(计算机科学)
作者
Haibing Wu,Xiaodong Gu
出处
期刊:Neural Networks [Elsevier]
卷期号:71: 1-10 被引量:212
标识
DOI:10.1016/j.neunet.2015.07.007
摘要

Recently, dropout has seen increasing use in deep learning. For deep convolutional neural networks, dropout is known to work well in fully-connected layers. However, its effect in convolutional and pooling layers is still not clear. This paper demonstrates that max-pooling dropout is equivalent to randomly picking activation based on a multinomial distribution at training time. In light of this insight, we advocate employing our proposed probabilistic weighted pooling, instead of commonly used max-pooling, to act as model averaging at test time. Empirical evidence validates the superiority of probabilistic weighted pooling. We also empirically show that the effect of convolutional dropout is not trivial, despite the dramatically reduced possibility of over-fitting due to the convolutional architecture. Elaborately designing dropout training simultaneously in max-pooling and fully-connected layers, we achieve state-of-the-art performance on MNIST, and very competitive results on CIFAR-10 and CIFAR-100, relative to other approaches without data augmentation. Finally, we compare max-pooling dropout and stochastic pooling, both of which introduce stochasticity based on multinomial distributions at pooling stage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
吴未完成签到,获得积分10
1秒前
aaa发布了新的文献求助20
1秒前
1秒前
石头发布了新的文献求助10
2秒前
绿野金完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
Akim应助werui采纳,获得10
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
汪汪的小可爱完成签到,获得积分10
4秒前
4秒前
深情安青应助月魂采纳,获得10
4秒前
4秒前
5秒前
lxz完成签到,获得积分20
5秒前
5秒前
1111111发布了新的文献求助10
5秒前
摇粒绒完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
111完成签到,获得积分10
6秒前
7秒前
刘明发布了新的文献求助10
7秒前
Gonna发布了新的文献求助10
7秒前
Iva发布了新的文献求助10
7秒前
花坂结衣完成签到,获得积分10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
123发布了新的文献求助10
8秒前
8秒前
9秒前
MRJJJJ完成签到,获得积分10
9秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727674
求助须知:如何正确求助?哪些是违规求助? 5309608
关于积分的说明 15311894
捐赠科研通 4875130
什么是DOI,文献DOI怎么找? 2618553
邀请新用户注册赠送积分活动 1568241
关于科研通互助平台的介绍 1524919