Longevity-conscious energy management strategy of fuel cell hybrid electric Vehicle Based on deep reinforcement learning

强化学习 能源管理 燃料效率 行驶循环 计算机科学 汽车工程 能源消耗 氢燃料 模拟 工程类
作者
Xiaolin Tang,Haitao Zhou,Feng Wang,Weida Wang,Xianke Lin
出处
期刊:Energy [Elsevier]
卷期号:238: 121593-121593
标识
DOI:10.1016/j.energy.2021.121593
摘要

Deep reinforcement learning-based energy management strategy play an essential role in improving fuel economy and extending fuel cell lifetime for fuel cell hybrid electric vehicles. In this work, the traditional Deep Q-Network is compared with the Deep Q-Network with prioritized experience replay. Furthermore, the Deep Q-Network with prioritized experience replay is designed for energy management strategy to minimize hydrogen consumption and compared with the dynamic programming. Moreover, the fuel cell system degradation is incorporated into the objective function, and a balance between fuel economy and fuel cell system degradation is achieved by adjusting the degradation weight and the hydrogen consumption weight. Finally, the combined driving cycle is selected to further verify the effectiveness of the proposed strategy in unfamiliar driving environments and untrained situations. The training results under UDDS show that the fuel economy of the EMS decreases by 0.53 % when fuel cell system degradation is considered, reaching 88.73 % of the DP-based EMS in the UDDS, and the degradation of fuel cell system is effectively suppressed. At the same time, the computational efficiency is improved by more than 70 % compared to the DP-based strategy. • A deep reinforcement learning energy management framework is developed. • An improved Deep Q-Network algorithm is used for energy management. • A PER-DQN-based energy management that considers the degradation of fuel cell is proposed. • A combined driving cycle is selected to further verify the effectiveness of the proposed strategy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
能干的寒凡完成签到,获得积分10
1秒前
1秒前
彭于晏应助你好采纳,获得10
1秒前
小马的可爱老婆完成签到,获得积分10
2秒前
weita完成签到,获得积分10
2秒前
炖地瓜完成签到 ,获得积分10
2秒前
oikikio完成签到,获得积分10
3秒前
2499297293发布了新的文献求助20
3秒前
biudungdung完成签到,获得积分10
3秒前
三水完成签到,获得积分10
3秒前
可爱中蓝发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
YLC完成签到 ,获得积分10
6秒前
方汀完成签到,获得积分10
6秒前
科研通AI6应助兔子采纳,获得10
7秒前
高高珩完成签到 ,获得积分10
7秒前
体贴西装完成签到 ,获得积分10
7秒前
shbkmy完成签到,获得积分10
7秒前
8秒前
星辰大海应助fjhsg25采纳,获得10
9秒前
水123发布了新的文献求助10
10秒前
10秒前
JiaJia发布了新的文献求助10
10秒前
优雅的皮卡丘完成签到,获得积分10
11秒前
11秒前
FashionBoy应助可爱中蓝采纳,获得10
11秒前
12秒前
12秒前
XxxxxxENT完成签到 ,获得积分10
12秒前
13秒前
ZLL发布了新的文献求助10
13秒前
大成完成签到,获得积分10
14秒前
xuan发布了新的文献求助10
16秒前
金枪鱼子完成签到,获得积分10
16秒前
乐观忆翠关注了科研通微信公众号
16秒前
迷路的十四完成签到,获得积分10
16秒前
17秒前
冰糖糖橘完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600283
求助须知:如何正确求助?哪些是违规求助? 4685999
关于积分的说明 14841023
捐赠科研通 4676153
什么是DOI,文献DOI怎么找? 2538671
邀请新用户注册赠送积分活动 1505744
关于科研通互助平台的介绍 1471167