亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Longevity-conscious energy management strategy of fuel cell hybrid electric Vehicle Based on deep reinforcement learning

强化学习 能源管理 燃料效率 行驶循环 计算机科学 汽车工程 能源消耗 氢燃料 模拟 工程类
作者
Xiaolin Tang,Haitao Zhou,Feng Wang,Weida Wang,Xianke Lin
出处
期刊:Energy [Elsevier BV]
卷期号:238: 121593-121593
标识
DOI:10.1016/j.energy.2021.121593
摘要

Deep reinforcement learning-based energy management strategy play an essential role in improving fuel economy and extending fuel cell lifetime for fuel cell hybrid electric vehicles. In this work, the traditional Deep Q-Network is compared with the Deep Q-Network with prioritized experience replay. Furthermore, the Deep Q-Network with prioritized experience replay is designed for energy management strategy to minimize hydrogen consumption and compared with the dynamic programming. Moreover, the fuel cell system degradation is incorporated into the objective function, and a balance between fuel economy and fuel cell system degradation is achieved by adjusting the degradation weight and the hydrogen consumption weight. Finally, the combined driving cycle is selected to further verify the effectiveness of the proposed strategy in unfamiliar driving environments and untrained situations. The training results under UDDS show that the fuel economy of the EMS decreases by 0.53 % when fuel cell system degradation is considered, reaching 88.73 % of the DP-based EMS in the UDDS, and the degradation of fuel cell system is effectively suppressed. At the same time, the computational efficiency is improved by more than 70 % compared to the DP-based strategy. • A deep reinforcement learning energy management framework is developed. • An improved Deep Q-Network algorithm is used for energy management. • A PER-DQN-based energy management that considers the degradation of fuel cell is proposed. • A combined driving cycle is selected to further verify the effectiveness of the proposed strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wzq完成签到,获得积分10
3秒前
GLv完成签到,获得积分20
21秒前
不攻自破发布了新的文献求助10
22秒前
39秒前
Palpitate发布了新的文献求助10
43秒前
46秒前
1分钟前
1分钟前
Shoujiang完成签到 ,获得积分10
1分钟前
Akim应助Achange采纳,获得10
1分钟前
1分钟前
领导范儿应助不攻自破采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
2分钟前
不攻自破发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
bluebell发布了新的文献求助10
2分钟前
2分钟前
胡萝卜完成签到,获得积分10
2分钟前
Achange发布了新的文献求助10
2分钟前
小飞鸡发布了新的文献求助10
3分钟前
猪仔5号完成签到 ,获得积分10
3分钟前
Achange完成签到,获得积分10
3分钟前
小飞鸡完成签到,获得积分10
3分钟前
xicifish完成签到,获得积分10
3分钟前
xicifish发布了新的文献求助10
3分钟前
欧皇完成签到,获得积分20
3分钟前
3分钟前
桐桐应助科研通管家采纳,获得10
3分钟前
韦老虎完成签到,获得积分20
3分钟前
3分钟前
bluebell完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965706
求助须知:如何正确求助?哪些是违规求助? 3510935
关于积分的说明 11155653
捐赠科研通 3245378
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804214