Longevity-conscious energy management strategy of fuel cell hybrid electric Vehicle Based on deep reinforcement learning

强化学习 能源管理 燃料效率 行驶循环 计算机科学 汽车工程 能源消耗 氢燃料 模拟 工程类
作者
Xiaolin Tang,Haitao Zhou,Feng Wang,Weida Wang,Xianke Lin
出处
期刊:Energy [Elsevier]
卷期号:238: 121593-121593
标识
DOI:10.1016/j.energy.2021.121593
摘要

Deep reinforcement learning-based energy management strategy play an essential role in improving fuel economy and extending fuel cell lifetime for fuel cell hybrid electric vehicles. In this work, the traditional Deep Q-Network is compared with the Deep Q-Network with prioritized experience replay. Furthermore, the Deep Q-Network with prioritized experience replay is designed for energy management strategy to minimize hydrogen consumption and compared with the dynamic programming. Moreover, the fuel cell system degradation is incorporated into the objective function, and a balance between fuel economy and fuel cell system degradation is achieved by adjusting the degradation weight and the hydrogen consumption weight. Finally, the combined driving cycle is selected to further verify the effectiveness of the proposed strategy in unfamiliar driving environments and untrained situations. The training results under UDDS show that the fuel economy of the EMS decreases by 0.53 % when fuel cell system degradation is considered, reaching 88.73 % of the DP-based EMS in the UDDS, and the degradation of fuel cell system is effectively suppressed. At the same time, the computational efficiency is improved by more than 70 % compared to the DP-based strategy. • A deep reinforcement learning energy management framework is developed. • An improved Deep Q-Network algorithm is used for energy management. • A PER-DQN-based energy management that considers the degradation of fuel cell is proposed. • A combined driving cycle is selected to further verify the effectiveness of the proposed strategy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
坚定的向雪完成签到,获得积分10
刚刚
自信雨安发布了新的文献求助10
1秒前
tang1发布了新的文献求助10
1秒前
2秒前
稳重口红发布了新的文献求助10
2秒前
欣欣向荣发布了新的文献求助10
3秒前
3秒前
义气丹雪应助李剑鸿采纳,获得100
3秒前
3秒前
ww发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助30
3秒前
小马甲应助王HH采纳,获得10
4秒前
小徐发布了新的文献求助10
4秒前
4秒前
4秒前
桐桐应助yong采纳,获得10
4秒前
wesley完成签到,获得积分10
4秒前
小马甲应助wzh1745采纳,获得10
4秒前
酷波er应助体贴薯片采纳,获得10
5秒前
5秒前
小珂完成签到 ,获得积分10
5秒前
耍酷的飞凤完成签到,获得积分10
5秒前
5秒前
zhjwu发布了新的文献求助10
6秒前
无情莫英完成签到,获得积分10
6秒前
miemiemie发布了新的文献求助10
6秒前
天天快乐应助阔达一寡采纳,获得10
6秒前
魔幻的小之完成签到,获得积分20
6秒前
629275发布了新的文献求助10
6秒前
7秒前
略略略完成签到,获得积分10
7秒前
等待的音响完成签到,获得积分10
7秒前
8秒前
完美世界应助优雅沛文采纳,获得10
8秒前
8秒前
8秒前
雍飞烟完成签到,获得积分10
9秒前
昼夜本色发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719050
求助须知:如何正确求助?哪些是违规求助? 5254852
关于积分的说明 15287660
捐赠科研通 4869006
什么是DOI,文献DOI怎么找? 2614559
邀请新用户注册赠送积分活动 1564435
关于科研通互助平台的介绍 1521807