Longevity-conscious energy management strategy of fuel cell hybrid electric Vehicle Based on deep reinforcement learning

强化学习 能源管理 燃料效率 行驶循环 计算机科学 汽车工程 能源消耗 氢燃料 模拟 工程类
作者
Xiaolin Tang,Haitao Zhou,Feng Wang,Weida Wang,Xianke Lin
出处
期刊:Energy [Elsevier]
卷期号:238: 121593-121593
标识
DOI:10.1016/j.energy.2021.121593
摘要

Deep reinforcement learning-based energy management strategy play an essential role in improving fuel economy and extending fuel cell lifetime for fuel cell hybrid electric vehicles. In this work, the traditional Deep Q-Network is compared with the Deep Q-Network with prioritized experience replay. Furthermore, the Deep Q-Network with prioritized experience replay is designed for energy management strategy to minimize hydrogen consumption and compared with the dynamic programming. Moreover, the fuel cell system degradation is incorporated into the objective function, and a balance between fuel economy and fuel cell system degradation is achieved by adjusting the degradation weight and the hydrogen consumption weight. Finally, the combined driving cycle is selected to further verify the effectiveness of the proposed strategy in unfamiliar driving environments and untrained situations. The training results under UDDS show that the fuel economy of the EMS decreases by 0.53 % when fuel cell system degradation is considered, reaching 88.73 % of the DP-based EMS in the UDDS, and the degradation of fuel cell system is effectively suppressed. At the same time, the computational efficiency is improved by more than 70 % compared to the DP-based strategy. • A deep reinforcement learning energy management framework is developed. • An improved Deep Q-Network algorithm is used for energy management. • A PER-DQN-based energy management that considers the degradation of fuel cell is proposed. • A combined driving cycle is selected to further verify the effectiveness of the proposed strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萧水白应助Kate采纳,获得30
3秒前
3秒前
maaicui完成签到,获得积分10
8秒前
ShujunOvO发布了新的文献求助10
8秒前
初七完成签到 ,获得积分10
11秒前
和谐曼凝完成签到 ,获得积分10
12秒前
iberis完成签到 ,获得积分10
13秒前
东东呀完成签到,获得积分10
15秒前
CipherSage应助科研通管家采纳,获得10
21秒前
星辰大海应助科研通管家采纳,获得10
21秒前
21秒前
酷波er应助科研通管家采纳,获得10
21秒前
Sid应助科研通管家采纳,获得10
22秒前
深情安青应助科研通管家采纳,获得10
22秒前
22秒前
寂寞的白凡完成签到,获得积分10
23秒前
memaclee完成签到,获得积分10
26秒前
lzq完成签到 ,获得积分10
28秒前
树袋熊完成签到,获得积分10
30秒前
柳冰清完成签到 ,获得积分10
31秒前
爆米花应助圆圆的波仔采纳,获得10
32秒前
希望天下0贩的0应助memaclee采纳,获得10
32秒前
32秒前
852应助帅气的祥采纳,获得10
36秒前
大海是故乡完成签到,获得积分10
36秒前
落星完成签到,获得积分10
38秒前
闪闪妍发布了新的文献求助10
38秒前
独特的夜阑完成签到 ,获得积分10
44秒前
梦在远方完成签到 ,获得积分10
46秒前
娇气的天亦完成签到,获得积分10
48秒前
49秒前
斯文的天奇完成签到 ,获得积分10
51秒前
hcjxj完成签到,获得积分10
53秒前
科研文献搬运工完成签到 ,获得积分0
53秒前
帅气的祥发布了新的文献求助10
54秒前
北风完成签到,获得积分10
55秒前
儒雅谷云完成签到 ,获得积分10
58秒前
金色天际线完成签到,获得积分10
1分钟前
1分钟前
Gang完成签到,获得积分10
1分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139684
求助须知:如何正确求助?哪些是违规求助? 2790623
关于积分的说明 7795749
捐赠科研通 2447017
什么是DOI,文献DOI怎么找? 1301553
科研通“疑难数据库(出版商)”最低求助积分说明 626264
版权声明 601176