How does investor sentiment impact stock volatility? New evidence from Shanghai A-shares market

波动性(金融) 经济 计量经济学 金融经济学 股票市场 库存(枪支) ARCH模型 综合指数 股票市场指数 机械工程 生物 工程类 古生物学 综合指标
作者
Dejun Xie,Yu Cui,Yujian Liu
出处
期刊:China Finance Review International [Emerald (MCB UP)]
卷期号:13 (1): 102-120 被引量:21
标识
DOI:10.1108/cfri-01-2021-0007
摘要

Purpose The focus of the current research is to examine whether mixed-frequency investor sentiment affects stock volatility in the China A-shares stock market. Design/methodology/approach Mixed-frequency sampling models are employed to find the relationship between stock market volatility and mixed-frequency investor sentiment. Principal analysis and MIDAS-GARCH model are used to calibrate the impact of investor sentiment on the large-horizon components of volatility of Shanghai composite stocks. Findings The results show that the volatility in Chinese stock market is positively influenced by B – W investor sentiment index, when the sentiment index encompasses weighted mixed frequencies with different horizons. In particular, the impact of mixed-frequency investor sentiment is most significantly on the large-horizon components of volatility. Moreover, it is demonstrated that mixed-frequency sampling model has better explanatory powers than exogenous regression models when accounting for the relationship between investor sentiment and stock volatility. Practical implications Given the various unique features of Chinese stock market and its importance as the major representative of world emerging markets, the findings of the current paper are of particularly scholarly and practical significance by shedding lights to the applicableness GARCH-MIDAS in the focused frontiers. Originality/value A more accurate and insightful understanding of volatility has always been one of the core scholarly pursuits since the influential structural time series modeling of Engle (1982) and the seminal work of Engle and Rangel (2008) attempting to accommodate macroeconomic factors into volatility models. However, the studies in this regard are so far relatively scarce with mixed conclusions. The current study fills such gaps with improved MIDAS-GARCH approach and new evidence from Shanghai A-share market.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蒋时晏应助Lam采纳,获得30
刚刚
充电宝应助西子阳采纳,获得10
1秒前
OvO发布了新的文献求助10
1秒前
嗨皮y完成签到 ,获得积分20
1秒前
科研通AI2S应助majf采纳,获得10
2秒前
不知道叫什么完成签到,获得积分10
2秒前
zhaomr完成签到,获得积分10
2秒前
2秒前
2秒前
平常的擎宇完成签到,获得积分10
3秒前
Hello应助白华苍松采纳,获得10
3秒前
碳土不凡发布了新的文献求助10
4秒前
耍酷花卷完成签到,获得积分10
4秒前
小丛完成签到 ,获得积分10
4秒前
4秒前
LZZ完成签到,获得积分10
4秒前
小木虫完成签到,获得积分10
5秒前
小二郎应助无情山水采纳,获得10
5秒前
5秒前
大晨发布了新的文献求助10
5秒前
赖道之发布了新的文献求助10
6秒前
6秒前
1111发布了新的文献求助10
6秒前
坤坤发布了新的文献求助10
6秒前
酷波er应助包容的剑采纳,获得10
6秒前
7秒前
7秒前
genoy完成签到,获得积分10
7秒前
乔乔完成签到,获得积分10
7秒前
吾问无为谓完成签到,获得积分20
9秒前
9秒前
9秒前
花椒泡茶完成签到,获得积分10
9秒前
9秒前
小马哥完成签到,获得积分20
9秒前
9秒前
10秒前
mkW完成签到,获得积分10
10秒前
读研好难完成签到,获得积分10
10秒前
跳跃的罡发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762