How does investor sentiment impact stock volatility? New evidence from Shanghai A-shares market

波动性(金融) 经济 计量经济学 金融经济学 股票市场 库存(枪支) ARCH模型 综合指数 股票市场指数 机械工程 古生物学 综合指标 工程类 生物
作者
Dejun Xie,Yu Cui,Yujian Liu
出处
期刊:China Finance Review International [Emerald (MCB UP)]
卷期号:13 (1): 102-120 被引量:21
标识
DOI:10.1108/cfri-01-2021-0007
摘要

Purpose The focus of the current research is to examine whether mixed-frequency investor sentiment affects stock volatility in the China A-shares stock market. Design/methodology/approach Mixed-frequency sampling models are employed to find the relationship between stock market volatility and mixed-frequency investor sentiment. Principal analysis and MIDAS-GARCH model are used to calibrate the impact of investor sentiment on the large-horizon components of volatility of Shanghai composite stocks. Findings The results show that the volatility in Chinese stock market is positively influenced by B – W investor sentiment index, when the sentiment index encompasses weighted mixed frequencies with different horizons. In particular, the impact of mixed-frequency investor sentiment is most significantly on the large-horizon components of volatility. Moreover, it is demonstrated that mixed-frequency sampling model has better explanatory powers than exogenous regression models when accounting for the relationship between investor sentiment and stock volatility. Practical implications Given the various unique features of Chinese stock market and its importance as the major representative of world emerging markets, the findings of the current paper are of particularly scholarly and practical significance by shedding lights to the applicableness GARCH-MIDAS in the focused frontiers. Originality/value A more accurate and insightful understanding of volatility has always been one of the core scholarly pursuits since the influential structural time series modeling of Engle (1982) and the seminal work of Engle and Rangel (2008) attempting to accommodate macroeconomic factors into volatility models. However, the studies in this regard are so far relatively scarce with mixed conclusions. The current study fills such gaps with improved MIDAS-GARCH approach and new evidence from Shanghai A-share market.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
蒋海完成签到 ,获得积分10
3秒前
Jasper应助合适依秋采纳,获得10
3秒前
yanwan完成签到,获得积分20
3秒前
5秒前
乖乖完成签到 ,获得积分10
6秒前
小蘑菇应助glowworm采纳,获得10
8秒前
9秒前
dhdafwet发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
飘零枫叶完成签到,获得积分0
14秒前
合适依秋发布了新的文献求助10
16秒前
willing3337应助Hang采纳,获得10
17秒前
19秒前
wanjingwan完成签到 ,获得积分10
20秒前
20秒前
Proddy完成签到 ,获得积分10
23秒前
23秒前
23秒前
不期而遇发布了新的文献求助30
24秒前
嗯哼发布了新的文献求助10
24秒前
灵巧的忻完成签到,获得积分20
25秒前
zz0429完成签到 ,获得积分10
27秒前
guajiguaji完成签到,获得积分10
28秒前
Geodada完成签到,获得积分10
29秒前
29秒前
情怀应助Herryoooooo采纳,获得10
30秒前
刘福兮完成签到,获得积分10
31秒前
32秒前
清修完成签到,获得积分10
33秒前
王树茂完成签到,获得积分10
33秒前
33秒前
笨笨青筠发布了新的文献求助10
34秒前
viauue9发布了新的文献求助10
35秒前
CodeCraft应助cassandra采纳,获得30
35秒前
downdown完成签到,获得积分10
36秒前
wst1988发布了新的文献求助10
36秒前
嗯哼完成签到 ,获得积分10
36秒前
高分求助中
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3122853
求助须知:如何正确求助?哪些是违规求助? 2773205
关于积分的说明 7716973
捐赠科研通 2428741
什么是DOI,文献DOI怎么找? 1289978
科研通“疑难数据库(出版商)”最低求助积分说明 621678
版权声明 600188