亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A machine learning algorithm to detect pine wilt disease using UAV-based hyperspectral imagery and LiDAR data at the tree level

激光雷达 高光谱成像 遥感 随机森林 树(集合论) 环境科学 地理 计算机科学 人工智能 数学 数学分析
作者
Runsheng Yu,Youqing Luo,Quan Zhou,Xudong Zhang,Dewei Wu,Lili Ren
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:101: 102363-102363 被引量:85
标识
DOI:10.1016/j.jag.2021.102363
摘要

Pine wilt disease (PWD) is a global destructive threat to forests, having caused extreme damage in China. Therefore, the establishment of an effective method to accurately monitor and map the infection stage by PWD is imperative. Unmanned aerial vehicle (UAV)-based hyperspectral imaging (HI) and light detection and ranging (LiDAR) technique is an effective approach for forest health monitoring. However, few previous studies have used airborne HI and LiDAR to detect PWD and compared the capability for predicting PWD infection stage at the tree level. In this paper, PWD infection was divided into five stages (green, early, middle, heavy, and grey), and HI and LiDAR data were integrated to detect PWD. We estimated the power of the hyperspectral method (HI data only), LiDAR (LiDAR data only), and their combination (HI plus LiDAR data) to predict the infection stages of PWD using the random forest (RF) algorithm. We obtained the following results: (1) The classification accuracies of HI (OA: 66.86%, Kappa: 0.57) were higher than those of LiDAR (OA: 45.56%, Kappa: 0.27) for predicting PWD infection stages, and their combination had the best accuracies (OA: 73.96%, Kappa: 0.66); (2) LiDAR data had higher ability for dead tree identification than HI data; and (3) The combined use of HI and LiDAR data for estimation of PWD infection stages showed that LiDAR metrics (e.g., crown volume) were essential in the classification model, although the variables derived from HI data contributed more than those extracted from LiDAR. Therefore, we proposed a new approach combining the merits of HI and LiDAR data to precisely predict PWD infection stages at the tree level, allowing better PWD monitoring and control. The approach could also be employed for mapping and monitoring other forest disturbance issues.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
ceeray23发布了新的文献求助20
7秒前
葱饼完成签到 ,获得积分10
17秒前
活泼的手机完成签到,获得积分10
24秒前
BowieHuang应助hamliton采纳,获得10
25秒前
26秒前
30秒前
33秒前
灵均完成签到 ,获得积分10
51秒前
白华苍松发布了新的文献求助20
53秒前
无花果应助香菜张采纳,获得10
1分钟前
顾矜应助白华苍松采纳,获得10
1分钟前
1分钟前
wanci应助renren采纳,获得10
1分钟前
1分钟前
1分钟前
香菜张发布了新的文献求助10
1分钟前
NattyPoe完成签到,获得积分10
2分钟前
zxcvvbb1001完成签到 ,获得积分10
2分钟前
2分钟前
renren发布了新的文献求助10
2分钟前
2分钟前
Yuki完成签到 ,获得积分10
3分钟前
3分钟前
ceeray23发布了新的文献求助20
3分钟前
领导范儿应助科研通管家采纳,获得30
3分钟前
3分钟前
vbnn完成签到 ,获得积分10
3分钟前
4分钟前
沙海沉戈完成签到,获得积分0
5分钟前
今后应助ceeray23采纳,获得20
5分钟前
Akim应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
情怀应助ceeray23采纳,获得20
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
5分钟前
6分钟前
ceeray23发布了新的文献求助20
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5529261
求助须知:如何正确求助?哪些是违规求助? 4618429
关于积分的说明 14562611
捐赠科研通 4557443
什么是DOI,文献DOI怎么找? 2497532
邀请新用户注册赠送积分活动 1477742
关于科研通互助平台的介绍 1449173