A machine learning algorithm to detect pine wilt disease using UAV-based hyperspectral imagery and LiDAR data at the tree level

激光雷达 高光谱成像 遥感 随机森林 树(集合论) 环境科学 地理 计算机科学 人工智能 数学 数学分析
作者
Runsheng Yu,Youqing Luo,Quan Zhou,Xudong Zhang,Dewei Wu,Lili Ren
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:101: 102363-102363 被引量:85
标识
DOI:10.1016/j.jag.2021.102363
摘要

Pine wilt disease (PWD) is a global destructive threat to forests, having caused extreme damage in China. Therefore, the establishment of an effective method to accurately monitor and map the infection stage by PWD is imperative. Unmanned aerial vehicle (UAV)-based hyperspectral imaging (HI) and light detection and ranging (LiDAR) technique is an effective approach for forest health monitoring. However, few previous studies have used airborne HI and LiDAR to detect PWD and compared the capability for predicting PWD infection stage at the tree level. In this paper, PWD infection was divided into five stages (green, early, middle, heavy, and grey), and HI and LiDAR data were integrated to detect PWD. We estimated the power of the hyperspectral method (HI data only), LiDAR (LiDAR data only), and their combination (HI plus LiDAR data) to predict the infection stages of PWD using the random forest (RF) algorithm. We obtained the following results: (1) The classification accuracies of HI (OA: 66.86%, Kappa: 0.57) were higher than those of LiDAR (OA: 45.56%, Kappa: 0.27) for predicting PWD infection stages, and their combination had the best accuracies (OA: 73.96%, Kappa: 0.66); (2) LiDAR data had higher ability for dead tree identification than HI data; and (3) The combined use of HI and LiDAR data for estimation of PWD infection stages showed that LiDAR metrics (e.g., crown volume) were essential in the classification model, although the variables derived from HI data contributed more than those extracted from LiDAR. Therefore, we proposed a new approach combining the merits of HI and LiDAR data to precisely predict PWD infection stages at the tree level, allowing better PWD monitoring and control. The approach could also be employed for mapping and monitoring other forest disturbance issues.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cheng发布了新的文献求助10
刚刚
雪花完成签到,获得积分10
1秒前
盟主完成签到 ,获得积分10
1秒前
1秒前
杨无敌完成签到 ,获得积分0
1秒前
1秒前
大个应助吟月归客采纳,获得10
2秒前
Christian完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
紫苏艾草22完成签到,获得积分10
3秒前
无私香彤完成签到 ,获得积分10
3秒前
希望天下0贩的0应助wrj采纳,获得10
3秒前
dakjdia发布了新的文献求助10
5秒前
学习完成签到,获得积分10
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
hhl完成签到,获得积分10
6秒前
丽丽完成签到,获得积分10
7秒前
夏林完成签到 ,获得积分10
7秒前
蚊蚊爱读书完成签到,获得积分0
7秒前
哎呀完成签到,获得积分10
8秒前
MKY完成签到,获得积分10
8秒前
今年我必胖20斤完成签到,获得积分10
8秒前
科研通AI2S应助酷炫大米采纳,获得10
9秒前
mingshi完成签到,获得积分10
9秒前
9秒前
番茄黄瓜芝士片完成签到 ,获得积分10
10秒前
孤独夏天完成签到,获得积分10
10秒前
11秒前
zzuzll发布了新的文献求助10
11秒前
充电宝应助平淡黑裤采纳,获得10
11秒前
忐忑的访彤完成签到,获得积分10
12秒前
guoxihan发布了新的文献求助10
12秒前
菠萝吹雪完成签到,获得积分10
12秒前
钟馗完成签到,获得积分10
12秒前
ttkd11完成签到,获得积分10
13秒前
Polling完成签到,获得积分10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773777
求助须知:如何正确求助?哪些是违规求助? 5613486
关于积分的说明 15432599
捐赠科研通 4906156
什么是DOI,文献DOI怎么找? 2640083
邀请新用户注册赠送积分活动 1587955
关于科研通互助平台的介绍 1542987