A machine learning algorithm to detect pine wilt disease using UAV-based hyperspectral imagery and LiDAR data at the tree level

激光雷达 高光谱成像 遥感 随机森林 树(集合论) 环境科学 地理 计算机科学 人工智能 数学 数学分析
作者
Runsheng Yu,Youqing Luo,Quan Zhou,Xudong Zhang,Dewei Wu,Lili Ren
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:101: 102363-102363 被引量:85
标识
DOI:10.1016/j.jag.2021.102363
摘要

Pine wilt disease (PWD) is a global destructive threat to forests, having caused extreme damage in China. Therefore, the establishment of an effective method to accurately monitor and map the infection stage by PWD is imperative. Unmanned aerial vehicle (UAV)-based hyperspectral imaging (HI) and light detection and ranging (LiDAR) technique is an effective approach for forest health monitoring. However, few previous studies have used airborne HI and LiDAR to detect PWD and compared the capability for predicting PWD infection stage at the tree level. In this paper, PWD infection was divided into five stages (green, early, middle, heavy, and grey), and HI and LiDAR data were integrated to detect PWD. We estimated the power of the hyperspectral method (HI data only), LiDAR (LiDAR data only), and their combination (HI plus LiDAR data) to predict the infection stages of PWD using the random forest (RF) algorithm. We obtained the following results: (1) The classification accuracies of HI (OA: 66.86%, Kappa: 0.57) were higher than those of LiDAR (OA: 45.56%, Kappa: 0.27) for predicting PWD infection stages, and their combination had the best accuracies (OA: 73.96%, Kappa: 0.66); (2) LiDAR data had higher ability for dead tree identification than HI data; and (3) The combined use of HI and LiDAR data for estimation of PWD infection stages showed that LiDAR metrics (e.g., crown volume) were essential in the classification model, although the variables derived from HI data contributed more than those extracted from LiDAR. Therefore, we proposed a new approach combining the merits of HI and LiDAR data to precisely predict PWD infection stages at the tree level, allowing better PWD monitoring and control. The approach could also be employed for mapping and monitoring other forest disturbance issues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助yyyyyyyjx采纳,获得10
刚刚
刚刚
刚刚
dong应助lerrygg采纳,获得20
1秒前
姚玲完成签到,获得积分10
1秒前
星辰发布了新的文献求助10
1秒前
2秒前
gosick发布了新的文献求助10
3秒前
kk发布了新的文献求助10
3秒前
标致小珍完成签到,获得积分10
3秒前
zhui发布了新的文献求助10
3秒前
科目三应助yiyi采纳,获得10
3秒前
洗碗净完成签到,获得积分10
3秒前
Lucas应助Gerald采纳,获得10
5秒前
小二郎应助霍骁采纳,获得10
5秒前
6秒前
李李发布了新的文献求助10
6秒前
斯文败类应助mani采纳,获得10
6秒前
6秒前
云轩发布了新的文献求助10
6秒前
7秒前
小宁发布了新的文献求助10
7秒前
7秒前
英俊的铭应助华天九四采纳,获得10
8秒前
jianhong发布了新的文献求助30
9秒前
10秒前
Owen应助nan采纳,获得10
11秒前
Beginner发布了新的文献求助10
11秒前
脑洞疼应助平淡爆米花采纳,获得10
12秒前
13秒前
科研通AI2S应助贲半梦采纳,获得10
13秒前
含蓄丸子发布了新的文献求助10
13秒前
姚翔完成签到,获得积分10
13秒前
wanci应助bobochi采纳,获得10
14秒前
Jennier发布了新的文献求助10
14秒前
zzzz发布了新的文献求助10
15秒前
想发顶刊发布了新的文献求助10
16秒前
17秒前
Hello应助研友_闾丘枫采纳,获得10
17秒前
研友_5Zl9D8完成签到,获得积分10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952072
求助须知:如何正确求助?哪些是违规求助? 3497487
关于积分的说明 11087843
捐赠科研通 3228126
什么是DOI,文献DOI怎么找? 1784700
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801203