A machine learning algorithm to detect pine wilt disease using UAV-based hyperspectral imagery and LiDAR data at the tree level

激光雷达 高光谱成像 遥感 随机森林 树(集合论) 环境科学 地理 计算机科学 人工智能 数学 数学分析
作者
Runsheng Yu,Youqing Luo,Quan Zhou,Xudong Zhang,Dewei Wu,Lili Ren
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:101: 102363-102363 被引量:85
标识
DOI:10.1016/j.jag.2021.102363
摘要

Pine wilt disease (PWD) is a global destructive threat to forests, having caused extreme damage in China. Therefore, the establishment of an effective method to accurately monitor and map the infection stage by PWD is imperative. Unmanned aerial vehicle (UAV)-based hyperspectral imaging (HI) and light detection and ranging (LiDAR) technique is an effective approach for forest health monitoring. However, few previous studies have used airborne HI and LiDAR to detect PWD and compared the capability for predicting PWD infection stage at the tree level. In this paper, PWD infection was divided into five stages (green, early, middle, heavy, and grey), and HI and LiDAR data were integrated to detect PWD. We estimated the power of the hyperspectral method (HI data only), LiDAR (LiDAR data only), and their combination (HI plus LiDAR data) to predict the infection stages of PWD using the random forest (RF) algorithm. We obtained the following results: (1) The classification accuracies of HI (OA: 66.86%, Kappa: 0.57) were higher than those of LiDAR (OA: 45.56%, Kappa: 0.27) for predicting PWD infection stages, and their combination had the best accuracies (OA: 73.96%, Kappa: 0.66); (2) LiDAR data had higher ability for dead tree identification than HI data; and (3) The combined use of HI and LiDAR data for estimation of PWD infection stages showed that LiDAR metrics (e.g., crown volume) were essential in the classification model, although the variables derived from HI data contributed more than those extracted from LiDAR. Therefore, we proposed a new approach combining the merits of HI and LiDAR data to precisely predict PWD infection stages at the tree level, allowing better PWD monitoring and control. The approach could also be employed for mapping and monitoring other forest disturbance issues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无聊的成败完成签到,获得积分20
刚刚
单纯的手机完成签到,获得积分10
刚刚
张楠楠完成签到,获得积分10
1秒前
xuxugogo完成签到,获得积分10
1秒前
斑马完成签到,获得积分10
1秒前
1秒前
lungfiga发布了新的文献求助10
1秒前
2秒前
kourosz发布了新的文献求助30
2秒前
量子星尘发布了新的文献求助10
2秒前
搜集达人应助Lumosv采纳,获得10
3秒前
3秒前
3秒前
赘婿应助加百莉采纳,获得10
3秒前
Roy完成签到,获得积分10
4秒前
Nicole完成签到,获得积分10
5秒前
脑洞疼应助大卜采纳,获得10
5秒前
123完成签到,获得积分10
5秒前
小小鱼儿完成签到,获得积分10
5秒前
一蓑烟雨完成签到,获得积分10
6秒前
天天快乐应助冷酷蛋挞采纳,获得10
6秒前
别止完成签到,获得积分10
7秒前
畅快的胡萝卜完成签到,获得积分10
8秒前
2026毕业啦完成签到,获得积分10
8秒前
Judy完成签到,获得积分10
9秒前
Yuuki完成签到,获得积分10
9秒前
9秒前
10秒前
灵巧的青寒完成签到,获得积分10
10秒前
慕青应助Xzmmmm采纳,获得10
10秒前
Eileen发布了新的文献求助10
10秒前
tqiii完成签到,获得积分10
12秒前
boyue完成签到,获得积分10
12秒前
小青椒应助Saoirse采纳,获得30
12秒前
拾一完成签到,获得积分10
13秒前
13秒前
范春艳完成签到,获得积分10
13秒前
参也完成签到 ,获得积分10
14秒前
毛豆爸爸发布了新的文献求助10
14秒前
加百莉发布了新的文献求助10
15秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
The Tangram Book: The Story of the Chinese Puzzle With over 2000 Puzzles to Solve 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450528
求助须知:如何正确求助?哪些是违规求助? 4558318
关于积分的说明 14266245
捐赠科研通 4481814
什么是DOI,文献DOI怎么找? 2454989
邀请新用户注册赠送积分活动 1445753
关于科研通互助平台的介绍 1421939