亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A machine learning algorithm to detect pine wilt disease using UAV-based hyperspectral imagery and LiDAR data at the tree level

激光雷达 高光谱成像 遥感 随机森林 树(集合论) 环境科学 地理 计算机科学 人工智能 数学 数学分析
作者
Runsheng Yu,Youqing Luo,Quan Zhou,Xudong Zhang,Dewei Wu,Lili Ren
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:101: 102363-102363 被引量:85
标识
DOI:10.1016/j.jag.2021.102363
摘要

Pine wilt disease (PWD) is a global destructive threat to forests, having caused extreme damage in China. Therefore, the establishment of an effective method to accurately monitor and map the infection stage by PWD is imperative. Unmanned aerial vehicle (UAV)-based hyperspectral imaging (HI) and light detection and ranging (LiDAR) technique is an effective approach for forest health monitoring. However, few previous studies have used airborne HI and LiDAR to detect PWD and compared the capability for predicting PWD infection stage at the tree level. In this paper, PWD infection was divided into five stages (green, early, middle, heavy, and grey), and HI and LiDAR data were integrated to detect PWD. We estimated the power of the hyperspectral method (HI data only), LiDAR (LiDAR data only), and their combination (HI plus LiDAR data) to predict the infection stages of PWD using the random forest (RF) algorithm. We obtained the following results: (1) The classification accuracies of HI (OA: 66.86%, Kappa: 0.57) were higher than those of LiDAR (OA: 45.56%, Kappa: 0.27) for predicting PWD infection stages, and their combination had the best accuracies (OA: 73.96%, Kappa: 0.66); (2) LiDAR data had higher ability for dead tree identification than HI data; and (3) The combined use of HI and LiDAR data for estimation of PWD infection stages showed that LiDAR metrics (e.g., crown volume) were essential in the classification model, although the variables derived from HI data contributed more than those extracted from LiDAR. Therefore, we proposed a new approach combining the merits of HI and LiDAR data to precisely predict PWD infection stages at the tree level, allowing better PWD monitoring and control. The approach could also be employed for mapping and monitoring other forest disturbance issues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
kokishi完成签到,获得积分10
6秒前
小净完成签到,获得积分10
26秒前
彭于晏应助科研通管家采纳,获得10
30秒前
完美世界应助科研通管家采纳,获得10
30秒前
科研通AI5应助aiid采纳,获得30
30秒前
Criminology34应助科研通管家采纳,获得10
30秒前
31秒前
31秒前
情怀应助冷酷代珊采纳,获得10
37秒前
orixero应助钟煜钟煜采纳,获得10
44秒前
大个应助HfO2AND采纳,获得10
46秒前
唐泽雪穗发布了新的文献求助50
47秒前
48秒前
53秒前
迷路的依波完成签到,获得积分10
53秒前
可爱的函函应助小付采纳,获得10
55秒前
华仔应助爆爆采纳,获得10
56秒前
钟煜钟煜发布了新的文献求助10
58秒前
唐泽雪穗应助欢喜的太清采纳,获得10
1分钟前
钟煜钟煜完成签到,获得积分10
1分钟前
1分钟前
233完成签到,获得积分10
1分钟前
善学以致用应助Francisco2333采纳,获得10
1分钟前
1分钟前
隐形曼青应助踏实小蘑菇采纳,获得10
1分钟前
1分钟前
子瑜刘完成签到,获得积分20
1分钟前
1分钟前
我是老大应助windy采纳,获得10
1分钟前
Camelia完成签到,获得积分10
1分钟前
彭瑞吉发布了新的文献求助10
1分钟前
BowieHuang应助唐泽雪穗采纳,获得60
2分钟前
俭朴夜雪完成签到,获得积分10
2分钟前
2分钟前
2分钟前
满意的伊完成签到,获得积分10
2分钟前
思源应助科研通管家采纳,获得30
2分钟前
传奇3应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5173046
求助须知:如何正确求助?哪些是违规求助? 4363119
关于积分的说明 13585077
捐赠科研通 4211360
什么是DOI,文献DOI怎么找? 2309785
邀请新用户注册赠送积分活动 1308858
关于科研通互助平台的介绍 1256155