A machine learning algorithm to detect pine wilt disease using UAV-based hyperspectral imagery and LiDAR data at the tree level

激光雷达 高光谱成像 遥感 随机森林 树(集合论) 环境科学 地理 计算机科学 人工智能 数学 数学分析
作者
Runsheng Yu,Youqing Luo,Quan Zhou,Xudong Zhang,Dewei Wu,Lili Ren
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:101: 102363-102363 被引量:85
标识
DOI:10.1016/j.jag.2021.102363
摘要

Pine wilt disease (PWD) is a global destructive threat to forests, having caused extreme damage in China. Therefore, the establishment of an effective method to accurately monitor and map the infection stage by PWD is imperative. Unmanned aerial vehicle (UAV)-based hyperspectral imaging (HI) and light detection and ranging (LiDAR) technique is an effective approach for forest health monitoring. However, few previous studies have used airborne HI and LiDAR to detect PWD and compared the capability for predicting PWD infection stage at the tree level. In this paper, PWD infection was divided into five stages (green, early, middle, heavy, and grey), and HI and LiDAR data were integrated to detect PWD. We estimated the power of the hyperspectral method (HI data only), LiDAR (LiDAR data only), and their combination (HI plus LiDAR data) to predict the infection stages of PWD using the random forest (RF) algorithm. We obtained the following results: (1) The classification accuracies of HI (OA: 66.86%, Kappa: 0.57) were higher than those of LiDAR (OA: 45.56%, Kappa: 0.27) for predicting PWD infection stages, and their combination had the best accuracies (OA: 73.96%, Kappa: 0.66); (2) LiDAR data had higher ability for dead tree identification than HI data; and (3) The combined use of HI and LiDAR data for estimation of PWD infection stages showed that LiDAR metrics (e.g., crown volume) were essential in the classification model, although the variables derived from HI data contributed more than those extracted from LiDAR. Therefore, we proposed a new approach combining the merits of HI and LiDAR data to precisely predict PWD infection stages at the tree level, allowing better PWD monitoring and control. The approach could also be employed for mapping and monitoring other forest disturbance issues.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助Alone离殇采纳,获得10
刚刚
芬芬完成签到,获得积分10
1秒前
三七完成签到 ,获得积分10
1秒前
平淡依玉发布了新的文献求助10
1秒前
科目三应助yan123采纳,获得10
2秒前
桐桐应助星辰采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
淀粉发布了新的文献求助10
2秒前
Jared应助调皮的滑板采纳,获得10
3秒前
泽锦臻发布了新的文献求助10
3秒前
4秒前
煜清清发布了新的文献求助20
4秒前
威威发布了新的文献求助10
4秒前
6秒前
Criminology34应助收手吧大哥采纳,获得10
6秒前
6秒前
jz完成签到,获得积分10
6秒前
蛋蛋蛋丹完成签到 ,获得积分10
8秒前
8秒前
可乐完成签到,获得积分10
8秒前
kano发布了新的文献求助30
8秒前
小末发布了新的文献求助10
8秒前
科研小白发布了新的文献求助10
9秒前
潺潺流水完成签到,获得积分10
10秒前
阿海的发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
liu11发布了新的文献求助10
11秒前
11秒前
叶访云发布了新的文献求助10
12秒前
欣慰元蝶应助leslie采纳,获得10
12秒前
12秒前
支原体感染力完成签到,获得积分10
13秒前
无花果应助嘉嘉嘉嘉嘉采纳,获得10
13秒前
13秒前
13秒前
13秒前
13秒前
星辰大海应助龙山采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545786
求助须知:如何正确求助?哪些是违规求助? 4631840
关于积分的说明 14622683
捐赠科研通 4573553
什么是DOI,文献DOI怎么找? 2507605
邀请新用户注册赠送积分活动 1484320
关于科研通互助平台的介绍 1455594