A machine learning algorithm to detect pine wilt disease using UAV-based hyperspectral imagery and LiDAR data at the tree level

激光雷达 高光谱成像 遥感 随机森林 树(集合论) 环境科学 地理 计算机科学 人工智能 数学 数学分析
作者
Runsheng Yu,Youqing Luo,Quan Zhou,Xudong Zhang,Dewei Wu,Lili Ren
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:101: 102363-102363 被引量:85
标识
DOI:10.1016/j.jag.2021.102363
摘要

Pine wilt disease (PWD) is a global destructive threat to forests, having caused extreme damage in China. Therefore, the establishment of an effective method to accurately monitor and map the infection stage by PWD is imperative. Unmanned aerial vehicle (UAV)-based hyperspectral imaging (HI) and light detection and ranging (LiDAR) technique is an effective approach for forest health monitoring. However, few previous studies have used airborne HI and LiDAR to detect PWD and compared the capability for predicting PWD infection stage at the tree level. In this paper, PWD infection was divided into five stages (green, early, middle, heavy, and grey), and HI and LiDAR data were integrated to detect PWD. We estimated the power of the hyperspectral method (HI data only), LiDAR (LiDAR data only), and their combination (HI plus LiDAR data) to predict the infection stages of PWD using the random forest (RF) algorithm. We obtained the following results: (1) The classification accuracies of HI (OA: 66.86%, Kappa: 0.57) were higher than those of LiDAR (OA: 45.56%, Kappa: 0.27) for predicting PWD infection stages, and their combination had the best accuracies (OA: 73.96%, Kappa: 0.66); (2) LiDAR data had higher ability for dead tree identification than HI data; and (3) The combined use of HI and LiDAR data for estimation of PWD infection stages showed that LiDAR metrics (e.g., crown volume) were essential in the classification model, although the variables derived from HI data contributed more than those extracted from LiDAR. Therefore, we proposed a new approach combining the merits of HI and LiDAR data to precisely predict PWD infection stages at the tree level, allowing better PWD monitoring and control. The approach could also be employed for mapping and monitoring other forest disturbance issues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷漠的布丁完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
迷人的冥完成签到,获得积分10
2秒前
砂糖发布了新的文献求助50
3秒前
W~舞发布了新的文献求助10
5秒前
6秒前
假行僧完成签到,获得积分10
6秒前
MWT完成签到,获得积分10
7秒前
wu完成签到,获得积分10
9秒前
愤怒也呵呵完成签到,获得积分10
9秒前
夕荀发布了新的文献求助10
9秒前
9秒前
mirror发布了新的文献求助10
10秒前
CodeCraft应助严泰采纳,获得10
10秒前
11秒前
baby完成签到,获得积分10
11秒前
一枚研究僧应助杳鸢采纳,获得50
13秒前
勤奋幻柏应助超级裁缝采纳,获得10
13秒前
Leeshore完成签到,获得积分10
14秒前
yoon发布了新的文献求助30
14秒前
夕荀完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
WWW发布了新的文献求助10
17秒前
bkagyin应助小赵采纳,获得10
17秒前
18秒前
灵均完成签到,获得积分10
18秒前
小眼儿完成签到,获得积分10
19秒前
20秒前
21秒前
一桶雪碧完成签到,获得积分10
21秒前
灵均发布了新的文献求助10
22秒前
青衣完成签到,获得积分10
22秒前
闪闪糖豆发布了新的文献求助10
23秒前
23秒前
lucky完成签到 ,获得积分10
23秒前
威武冷雪发布了新的文献求助10
25秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242966
求助须知:如何正确求助?哪些是违规求助? 2887078
关于积分的说明 8246239
捐赠科研通 2555661
什么是DOI,文献DOI怎么找? 1383762
科研通“疑难数据库(出版商)”最低求助积分说明 649757
邀请新用户注册赠送积分活动 625625