Highly selective metal recovery from spent lithium-ion batteries through stoichiometric hydrogen ion replacement

浸出(土壤学) 材料科学 阴极 化学计量学 氧化物 无机化学 锂(药物) 金属 过渡金属 选择性浸出 化学 冶金 环境科学 催化作用 有机化学 内分泌学 医学 生物化学 土壤水分 土壤科学 物理化学
作者
Weiguang Lv,Xiaohong Zheng,Li Li,Hongbin Cao,Yi Zhang,Renjie Chen,Hancheng Ou,Feiyu Kang,Zhi Sun
出处
期刊:Frontiers of Chemical Science and Engineering [Higher Education Press]
卷期号:15 (5): 1243-1256 被引量:24
标识
DOI:10.1007/s11705-020-2029-3
摘要

Spent lithium-ion battery recycling has attracted significant attention because of its importance in regard to the environment and resource importance. Traditional hydrometallurgical methods usually leach all valuable metals and subsequently extract target meals to prepare corresponding materials. However, Li recovery in these processes requires lengthy operational procedures, and the recovery efficiency is low. In this research, we demonstrate a method to selectively recover lithium before the leaching of other elements by introducing a hydrothermal treatment. Approximately 90% of Li is leached from high-Ni layered oxide cathode powders, while consuming a nearly stoichiometric amount of hydrogen ions. With this selective recovery of Li, the transition metals remain as solid residue hydroxides or oxides. Furthermore, the extraction of Li is found to be highly dependent on the content of transition metals in the cathode materials. A high leaching selectivity of Li (> 98%) and nearly 95% leaching efficiency of Li can be reached with LiNi0.8Co0.1Mn0.1O2. In this case, both the energy and material consumption during the proposed Li recovery is significantly decreased compared to traditional methods; furthermore, the proposed method makes full use of H+ to leach Li+. This research is expected to provide new understanding for selectively recovering metal from secondary resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xlbn完成签到,获得积分10
1秒前
芒果你真甜完成签到,获得积分10
1秒前
1秒前
科研小孩儿完成签到,获得积分10
1秒前
2秒前
认真的一刀完成签到,获得积分10
3秒前
4秒前
lomon99应助ZY采纳,获得20
4秒前
zzz发布了新的文献求助10
4秒前
5秒前
wanci应助念姬采纳,获得10
5秒前
5秒前
Ayu应助科研小孩儿采纳,获得10
6秒前
hhhh发布了新的文献求助10
6秒前
7秒前
myth完成签到,获得积分10
7秒前
seeuu发布了新的文献求助10
8秒前
liuqinqin完成签到,获得积分10
8秒前
陌路完成签到,获得积分10
9秒前
10秒前
Sxq应助欣然采纳,获得10
10秒前
跳跃忆灵完成签到,获得积分10
11秒前
11秒前
执着期待发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
12秒前
eui完成签到,获得积分10
13秒前
耳朵先生发布了新的文献求助10
13秒前
SciGPT应助hhhh采纳,获得10
13秒前
15秒前
Xu完成签到,获得积分10
16秒前
科研通AI5应助17采纳,获得10
16秒前
16秒前
成就白亦发布了新的文献求助10
16秒前
yian发布了新的文献求助10
17秒前
鹏大鹏发布了新的文献求助10
17秒前
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966430
求助须知:如何正确求助?哪些是违规求助? 3511854
关于积分的说明 11160310
捐赠科研通 3246555
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874438
科研通“疑难数据库(出版商)”最低求助积分说明 804388