Growth of Single Crystal Diamond Wafers for Future Device Applications

材料科学 化学气相沉积 钻石 成核 光电子学 位错 薄脆饼 纳米技术 Crystal(编程语言) 半导体 化学 复合材料 计算机科学 有机化学 程序设计语言
作者
M. Schreck
标识
DOI:10.1002/9783527824724.ch20
摘要

Due to its unique combination of superior material properties, diamond is often referred to as the ultimate semiconductor material for high-power electronics. Lack of wafer-size electronic-grade single crystals was always considered a crucial bottleneck for the device development and the subsequent transfer to industrial processes. Over the last years, significant progress has been made for the classical high-pressure high-temperature (HPHT) method and in particular for the alternative chemical vapor deposition (CVD) technique. This review first briefly describes the HPHT technique which copies the natural formation process working under conditions under which diamond is thermodynamically the stable phase of carbon. It is capable to produce small crystals virtually free of dislocations. The maximum size of available substrates is currently ≈15 × 15 mm 2 . In contrast, CVD growth takes place at more moderate temperatures, at pressures below ambient conditions and far from equilibrium. The general aspects of diamond CVD comprising the gas phase chemistry, different technical approaches for gas phase activation and reactor design are summarized. There are two competing approaches toward single crystal diamond wafers required for electronic applications. Homoepitaxy is performed on highest quality HPHT seed crystals, and various concepts are explored to increase sample dimensions during CVD processes. In contrast, heteroepitaxy involves nucleation and growth on foreign substrates. While homoepitaxial crystals excel with minimum dislocation densities, they are outperformed in terms of size by 3.5-in.-diameter diamond wafers synthesized by heteroepitaxy on Ir/YSZ/Si(001). Classical and novel concepts for further defect reduction during CVD growth are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zhang发布了新的文献求助10
3秒前
浮游应助阳宝是个小蜜蜂采纳,获得10
3秒前
三年半完成签到,获得积分10
4秒前
初夏发布了新的文献求助10
5秒前
7秒前
努力游游完成签到,获得积分10
7秒前
7秒前
直率的心情完成签到,获得积分10
7秒前
JGchen发布了新的文献求助10
9秒前
GKUR发布了新的文献求助10
11秒前
yangican发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助150
13秒前
无花果应助弯碧琼采纳,获得10
15秒前
liuying发布了新的文献求助10
15秒前
hnn完成签到 ,获得积分10
18秒前
docyuchi完成签到,获得积分10
19秒前
21秒前
Jovie完成签到,获得积分10
22秒前
24秒前
liuying完成签到,获得积分10
25秒前
大大泡泡发布了新的文献求助10
25秒前
27秒前
28秒前
Xx完成签到,获得积分20
29秒前
弯碧琼发布了新的文献求助10
29秒前
11发布了新的文献求助10
31秒前
32秒前
DY完成签到,获得积分10
32秒前
33秒前
34秒前
丁莞发布了新的文献求助10
36秒前
虚心的问丝完成签到 ,获得积分10
37秒前
雪菲菲发布了新的文献求助10
40秒前
小蘑菇应助微眠采纳,获得10
41秒前
丁莞完成签到,获得积分10
42秒前
六碗鱼完成签到 ,获得积分10
43秒前
46秒前
46秒前
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
Elgar Concise Encyclopedia of Polar Law 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4906930
求助须知:如何正确求助?哪些是违规求助? 4184232
关于积分的说明 12993216
捐赠科研通 3950519
什么是DOI,文献DOI怎么找? 2166565
邀请新用户注册赠送积分活动 1185122
关于科研通互助平台的介绍 1091450