Growth of Single Crystal Diamond Wafers for Future Device Applications

材料科学 化学气相沉积 钻石 成核 光电子学 位错 薄脆饼 纳米技术 Crystal(编程语言) 半导体 化学 复合材料 计算机科学 有机化学 程序设计语言
作者
M. Schreck
标识
DOI:10.1002/9783527824724.ch20
摘要

Due to its unique combination of superior material properties, diamond is often referred to as the ultimate semiconductor material for high-power electronics. Lack of wafer-size electronic-grade single crystals was always considered a crucial bottleneck for the device development and the subsequent transfer to industrial processes. Over the last years, significant progress has been made for the classical high-pressure high-temperature (HPHT) method and in particular for the alternative chemical vapor deposition (CVD) technique. This review first briefly describes the HPHT technique which copies the natural formation process working under conditions under which diamond is thermodynamically the stable phase of carbon. It is capable to produce small crystals virtually free of dislocations. The maximum size of available substrates is currently ≈15 × 15 mm 2 . In contrast, CVD growth takes place at more moderate temperatures, at pressures below ambient conditions and far from equilibrium. The general aspects of diamond CVD comprising the gas phase chemistry, different technical approaches for gas phase activation and reactor design are summarized. There are two competing approaches toward single crystal diamond wafers required for electronic applications. Homoepitaxy is performed on highest quality HPHT seed crystals, and various concepts are explored to increase sample dimensions during CVD processes. In contrast, heteroepitaxy involves nucleation and growth on foreign substrates. While homoepitaxial crystals excel with minimum dislocation densities, they are outperformed in terms of size by 3.5-in.-diameter diamond wafers synthesized by heteroepitaxy on Ir/YSZ/Si(001). Classical and novel concepts for further defect reduction during CVD growth are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彩色德天发布了新的文献求助10
刚刚
孙凯欣发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
1秒前
2秒前
研友_VZG7GZ应助黑白采纳,获得10
2秒前
2秒前
3秒前
4秒前
包惜筠发布了新的文献求助10
4秒前
sxd发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
5秒前
xiaozhou发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
传奇3应助jscr采纳,获得10
6秒前
6秒前
6秒前
521科研菜鸟完成签到,获得积分20
6秒前
7秒前
Miracle完成签到,获得积分10
7秒前
7秒前
欣喜谷槐发布了新的文献求助10
7秒前
王美惠发布了新的文献求助10
7秒前
abc完成签到 ,获得积分10
7秒前
mudoo发布了新的文献求助10
8秒前
饺子完成签到,获得积分10
8秒前
英俊的胜发布了新的文献求助10
8秒前
核桃发布了新的文献求助10
8秒前
慕青应助rrjl采纳,获得10
9秒前
9秒前
cxcx发布了新的文献求助10
9秒前
勇敢牛牛完成签到 ,获得积分10
9秒前
hdskjahfi发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5167443
求助须知:如何正确求助?哪些是违规求助? 4359422
关于积分的说明 13572960
捐赠科研通 4205794
什么是DOI,文献DOI怎么找? 2306607
邀请新用户注册赠送积分活动 1306223
关于科研通互助平台的介绍 1252822