Growth of Single Crystal Diamond Wafers for Future Device Applications

材料科学 化学气相沉积 钻石 成核 光电子学 位错 薄脆饼 纳米技术 Crystal(编程语言) 半导体 化学 复合材料 计算机科学 有机化学 程序设计语言
作者
M. Schreck
标识
DOI:10.1002/9783527824724.ch20
摘要

Due to its unique combination of superior material properties, diamond is often referred to as the ultimate semiconductor material for high-power electronics. Lack of wafer-size electronic-grade single crystals was always considered a crucial bottleneck for the device development and the subsequent transfer to industrial processes. Over the last years, significant progress has been made for the classical high-pressure high-temperature (HPHT) method and in particular for the alternative chemical vapor deposition (CVD) technique. This review first briefly describes the HPHT technique which copies the natural formation process working under conditions under which diamond is thermodynamically the stable phase of carbon. It is capable to produce small crystals virtually free of dislocations. The maximum size of available substrates is currently ≈15 × 15 mm 2 . In contrast, CVD growth takes place at more moderate temperatures, at pressures below ambient conditions and far from equilibrium. The general aspects of diamond CVD comprising the gas phase chemistry, different technical approaches for gas phase activation and reactor design are summarized. There are two competing approaches toward single crystal diamond wafers required for electronic applications. Homoepitaxy is performed on highest quality HPHT seed crystals, and various concepts are explored to increase sample dimensions during CVD processes. In contrast, heteroepitaxy involves nucleation and growth on foreign substrates. While homoepitaxial crystals excel with minimum dislocation densities, they are outperformed in terms of size by 3.5-in.-diameter diamond wafers synthesized by heteroepitaxy on Ir/YSZ/Si(001). Classical and novel concepts for further defect reduction during CVD growth are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HY完成签到 ,获得积分10
2秒前
干净傲霜完成签到 ,获得积分10
6秒前
盒子he发布了新的文献求助10
8秒前
灵梦柠檬酸完成签到,获得积分10
11秒前
研友_ngqoE8完成签到,获得积分10
11秒前
ChatGPT完成签到,获得积分10
19秒前
外向的芒果完成签到 ,获得积分10
26秒前
haochi完成签到,获得积分10
32秒前
予秋发布了新的文献求助10
32秒前
33秒前
roundtree完成签到 ,获得积分0
33秒前
catherine发布了新的文献求助30
39秒前
自然代亦完成签到 ,获得积分10
39秒前
43秒前
44秒前
Orange应助ling_lz采纳,获得10
44秒前
Skyllne完成签到 ,获得积分10
50秒前
Kevin完成签到 ,获得积分10
51秒前
平淡尔琴完成签到,获得积分10
51秒前
ZZH完成签到,获得积分10
58秒前
59秒前
粗犷的灵松完成签到 ,获得积分10
1分钟前
jaytotti完成签到,获得积分10
1分钟前
1分钟前
共享精神应助甜芋采纳,获得30
1分钟前
Kevin发布了新的文献求助10
1分钟前
韩寒完成签到 ,获得积分10
1分钟前
00完成签到 ,获得积分10
1分钟前
zzz完成签到,获得积分10
1分钟前
Virginkiller1984完成签到 ,获得积分10
1分钟前
1分钟前
甜芋发布了新的文献求助30
1分钟前
catherine完成签到,获得积分10
1分钟前
机智幻香完成签到 ,获得积分10
1分钟前
沐啊完成签到 ,获得积分10
1分钟前
1分钟前
左丘映易完成签到,获得积分0
1分钟前
ling_lz发布了新的文献求助10
1分钟前
jw完成签到,获得积分10
1分钟前
vlots应助甜芋采纳,获得30
1分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5347451
求助须知:如何正确求助?哪些是违规求助? 4481760
关于积分的说明 13948066
捐赠科研通 4380032
什么是DOI,文献DOI怎么找? 2406708
邀请新用户注册赠送积分活动 1399288
关于科研通互助平台的介绍 1372428