Growth of Single Crystal Diamond Wafers for Future Device Applications

材料科学 化学气相沉积 钻石 成核 光电子学 位错 薄脆饼 纳米技术 Crystal(编程语言) 半导体 化学 复合材料 计算机科学 有机化学 程序设计语言
作者
M. Schreck
标识
DOI:10.1002/9783527824724.ch20
摘要

Due to its unique combination of superior material properties, diamond is often referred to as the ultimate semiconductor material for high-power electronics. Lack of wafer-size electronic-grade single crystals was always considered a crucial bottleneck for the device development and the subsequent transfer to industrial processes. Over the last years, significant progress has been made for the classical high-pressure high-temperature (HPHT) method and in particular for the alternative chemical vapor deposition (CVD) technique. This review first briefly describes the HPHT technique which copies the natural formation process working under conditions under which diamond is thermodynamically the stable phase of carbon. It is capable to produce small crystals virtually free of dislocations. The maximum size of available substrates is currently ≈15 × 15 mm 2 . In contrast, CVD growth takes place at more moderate temperatures, at pressures below ambient conditions and far from equilibrium. The general aspects of diamond CVD comprising the gas phase chemistry, different technical approaches for gas phase activation and reactor design are summarized. There are two competing approaches toward single crystal diamond wafers required for electronic applications. Homoepitaxy is performed on highest quality HPHT seed crystals, and various concepts are explored to increase sample dimensions during CVD processes. In contrast, heteroepitaxy involves nucleation and growth on foreign substrates. While homoepitaxial crystals excel with minimum dislocation densities, they are outperformed in terms of size by 3.5-in.-diameter diamond wafers synthesized by heteroepitaxy on Ir/YSZ/Si(001). Classical and novel concepts for further defect reduction during CVD growth are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pi完成签到 ,获得积分20
刚刚
发嗲的忆寒完成签到,获得积分10
刚刚
爆米花应助通~采纳,获得10
刚刚
333完成签到 ,获得积分10
1秒前
MES完成签到,获得积分10
1秒前
糊弄学专家完成签到,获得积分10
1秒前
852应助ccyrichard采纳,获得10
2秒前
2秒前
2秒前
噜噜噜噜噜完成签到,获得积分10
3秒前
leez完成签到,获得积分10
3秒前
hohokuz发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
赘婿应助mrmrer采纳,获得10
5秒前
5秒前
赘婿应助三九采纳,获得10
5秒前
6秒前
6秒前
GEeZiii发布了新的文献求助10
6秒前
6秒前
7777777发布了新的文献求助10
6秒前
研友_nv2r4n发布了新的文献求助10
6秒前
Bman完成签到,获得积分10
7秒前
sakurai应助愤怒的寄琴采纳,获得10
7秒前
迟大猫应助简单的银耳汤采纳,获得10
7秒前
Owen应助LJL采纳,获得10
7秒前
8秒前
cwn完成签到,获得积分10
8秒前
zhuzhu完成签到,获得积分0
8秒前
丘比特应助彩色的蓝天采纳,获得10
8秒前
ChoccyPasta完成签到,获得积分10
9秒前
9秒前
感动的冬云完成签到,获得积分10
9秒前
嘤嘤嘤发布了新的文献求助10
10秒前
wuhaixia完成签到,获得积分10
10秒前
正版DY完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794