Expression, Purification and Refolding of a Human NaV1.7 Voltage Sensing Domain with Native-Like Toxin Binding Properties

微尺度热泳 重组DNA 钠通道 离解常数 结合位点 突变体 门控 生物物理学 血浆蛋白结合 化学 导航1 生物化学 生物 受体 基因 有机化学
作者
Ryan V. Schroder,Leah S. Cohen,Ping Wang,Joekeem D. Arizala,Sébastien F. Poget
出处
期刊:Toxins [MDPI AG]
卷期号:13 (10): 722-722
标识
DOI:10.3390/toxins13100722
摘要

The voltage-gated sodium channel NaV1.7 is an important target for drug development due to its role in pain perception. Recombinant expression of full-length channels and their use for biophysical characterization of interactions with potential drug candidates is challenging due to the protein size and complexity. To overcome this issue, we developed a protocol for the recombinant expression in E. coli and refolding into lipids of the isolated voltage sensing domain (VSD) of repeat II of NaV1.7, obtaining yields of about 2 mg of refolded VSD from 1 L bacterial cell culture. This VSD is known to be involved in the binding of a number of gating-modifier toxins, including the tarantula toxins ProTx-II and GpTx-I. Binding studies using microscale thermophoresis showed that recombinant refolded VSD binds both of these toxins with dissociation constants in the high nM range, and their relative binding affinities reflect the relative IC50 values of these toxins for full-channel inhibition. Additionally, we expressed mutant VSDs incorporating single amino acid substitutions that had previously been shown to affect the activity of ProTx-II on full channel. We found decreases in GpTx-I binding affinity for these mutants, consistent with a similar binding mechanism for GpTx-I as compared to that of ProTx-II. Therefore, this recombinant VSD captures many of the native interactions between NaV1.7 and tarantula gating-modifier toxins and represents a valuable tool for elucidating details of toxin binding and specificity that could help in the design of non-addictive pain medication acting through NaV1.7 inhibition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fa完成签到,获得积分10
刚刚
1秒前
kira完成签到,获得积分10
2秒前
舒服的茹嫣完成签到,获得积分20
2秒前
Stvn发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
4秒前
明理的天蓝完成签到,获得积分10
4秒前
咳咳发布了新的文献求助10
4秒前
木叶研完成签到,获得积分10
4秒前
无花果应助通~采纳,获得10
4秒前
5秒前
6秒前
周助发布了新的文献求助10
6秒前
伯赏秋白完成签到,获得积分10
6秒前
慕青应助sunzhiyu233采纳,获得10
6秒前
Sherwin完成签到,获得积分10
6秒前
羽毛完成签到,获得积分20
7秒前
xiongjian发布了新的文献求助10
7秒前
一方通行完成签到 ,获得积分10
7秒前
7秒前
monster0101完成签到 ,获得积分10
7秒前
8秒前
8秒前
9秒前
Stvn完成签到,获得积分20
9秒前
核桃发布了新的文献求助10
9秒前
跳跃的太阳完成签到,获得积分10
10秒前
10秒前
enoot完成签到,获得积分10
10秒前
dalin完成签到,获得积分10
10秒前
YE发布了新的文献求助10
10秒前
buno应助外向的沅采纳,获得10
10秒前
体贴啤酒发布了新的文献求助10
11秒前
花痴的谷雪完成签到,获得积分10
11秒前
11秒前
圈圈发布了新的文献求助10
11秒前
亮亮完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740