微尺度热泳
重组DNA
钠通道
离解常数
结合位点
突变体
门控
生物物理学
血浆蛋白结合
化学
导航1
生物化学
生物
钠
受体
基因
有机化学
作者
Ryan V. Schroder,Leah S. Cohen,Ping Wang,Joekeem D. Arizala,Sébastien F. Poget
出处
期刊:Toxins
[MDPI AG]
日期:2021-10-12
卷期号:13 (10): 722-722
标识
DOI:10.3390/toxins13100722
摘要
The voltage-gated sodium channel NaV1.7 is an important target for drug development due to its role in pain perception. Recombinant expression of full-length channels and their use for biophysical characterization of interactions with potential drug candidates is challenging due to the protein size and complexity. To overcome this issue, we developed a protocol for the recombinant expression in E. coli and refolding into lipids of the isolated voltage sensing domain (VSD) of repeat II of NaV1.7, obtaining yields of about 2 mg of refolded VSD from 1 L bacterial cell culture. This VSD is known to be involved in the binding of a number of gating-modifier toxins, including the tarantula toxins ProTx-II and GpTx-I. Binding studies using microscale thermophoresis showed that recombinant refolded VSD binds both of these toxins with dissociation constants in the high nM range, and their relative binding affinities reflect the relative IC50 values of these toxins for full-channel inhibition. Additionally, we expressed mutant VSDs incorporating single amino acid substitutions that had previously been shown to affect the activity of ProTx-II on full channel. We found decreases in GpTx-I binding affinity for these mutants, consistent with a similar binding mechanism for GpTx-I as compared to that of ProTx-II. Therefore, this recombinant VSD captures many of the native interactions between NaV1.7 and tarantula gating-modifier toxins and represents a valuable tool for elucidating details of toxin binding and specificity that could help in the design of non-addictive pain medication acting through NaV1.7 inhibition.
科研通智能强力驱动
Strongly Powered by AbleSci AI