计算机科学
脑电图
卷积神经网络
人工智能
模式识别(心理学)
人工神经网络
深度学习
期限(时间)
癫痫发作
癫痫
机器学习
发作性
作者
Xiaoshuang Wang,Guanghui Zhang,Ying Wang,Lin Yang,Zhanhua Liang,Fengyu Cong
标识
DOI:10.1142/s0129065721500489
摘要
Seizure prediction using intracranial electroencephalogram (iEEG) has attracted an increasing attention during recent years. iEEG signals are commonly recorded in the form of multiple channels. Many previous studies generally used the iEEG signals of all channels to predict seizures, ignoring the consideration of channel selection. In this study, a method of one-dimensional convolutional neural networks (1D-CNN) combined with channel selection strategy was proposed for seizure prediction. First, we used 30-s sliding windows to segment the raw iEEG signals. Then, the 30-s iEEG segments, which were in three channel forms (single channel, channels only from seizure onset or free zone and all channels from seizure onset and free zones), were used as the inputs of 1D-CNN for classification, and the patient-specific model was trained. Finally, the channel form with the best classification was selected for each patient. The proposed method was evaluated on the Freiburg Hospital iEEG dataset. In the situation of seizure occurrence period (SOP) of 30[Formula: see text]min and seizure prediction horizon (SPH) of 5[Formula: see text]min, 98.60[Formula: see text] accuracy, 98.85[Formula: see text] sensitivity and 0.01/h false prediction rate (FPR) were achieved. In the situation of SOP of 60[Formula: see text]min and SPH of 5[Formula: see text]min, 98.32[Formula: see text] accuracy, 98.48[Formula: see text] sensitivity and 0.01/h FPR were attained. Compared with the many existing methods using the same iEEG dataset, our method showed a better performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI