青蒿素
代谢物
药代动力学
哌喹
药理学
疟疾
医学
新陈代谢
化学
联合疗法
青蒿琥酯
恶性疟原虫
蒿甲醚
氯喹
毒性
生物化学
有机化学
作者
Liyuan Zhang,Zhaohua Liu,Yunrui Zhang,Yuewu Xie,Jie Xing
出处
期刊:Current Drug Metabolism
[Bentham Science]
日期:2021-08-01
卷期号:22 (10): 824-834
被引量:1
标识
DOI:10.2174/1389200222666210928124943
摘要
Hepatocellular damage has been reported for the antimalarial piperaquine (PQ) in the clinic after cumulative doses.The role of metabolism in PQ toxicity was evaluated, and the mechanism mediating PQ hepatotoxicity was investigated.The toxicity of PQ and its major metabolite (PQ N-oxide; M1) in mice was evaluated in terms of serum biochemical parameters. The role of metabolism in PQ toxicity was investigated in mice pretreated with an inhibitor of CYP450 (ABT) and/or FMO enzyme (MMI). The dose-dependent pharmacokinetics of PQ and M1 were studied in mice. Histopathological examination was performed to reveal the mechanism mediating PQ hepatotoxicity.Serum biochemical levels (ALT and BUN) increased significantly (P < 0.05) in mice after three-day oral doses of PQ (> 200 mg/kg/day), indicating hepatotoxicity and nephrotoxicity of PQ at a high dose. Weaker toxicity was observed for M1. Pretreatment with ABT and/or MMI did not increase PQ toxicity. PQ and M1 showed linear pharmacokinetics in mice after a single oral dose, and multiple oral doses led to their cumulative exposures. Histopathological examination showed that a high dose of PQ (> 200 mg/kg/day for three days) could induce hepatocyte apoptosis. The mRNA levels of targets in NF-κB and p53 pathways could be up-regulated by 2-30-fold in mice by PQ or M1.PQ metabolism led to detoxification of PQ, but there was a low possibility of altered toxicity induced by metabolism inhibition. The hepatotoxicity of PQ and its N-oxidation metabolite was partly mediated by NF-κB inflammatory pathway and p53 apoptosis pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI