A comparative analysis of euphemistic sentences in news using feature weight scheme and intelligent techniques

计算机科学 人工智能 二元曲线 加权 特征(语言学) 模式识别(心理学) 卷积神经网络 C4.5算法 委婉语 三元曲线 随机森林 方案(数学) 感知器 机器学习 支持向量机 朴素贝叶斯分类器 自然语言处理 人工神经网络 数学 放射科 数学分析 哲学 历史 医学 考古 语言学
作者
K. Seethappan,K. Premalatha
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:42 (3): 1937-1948 被引量:2
标识
DOI:10.3233/jifs-211295
摘要

Although there have been various researches in the detection of different figurative language, there is no single work in the automatic classification of euphemisms. Our primary work is to present a system for the automatic classification of euphemistic phrases in a document. In this research, a large dataset consisting of 100,000 sentences is collected from different resources for identifying euphemism or non-euphemism utterances. In this work, several approaches are focused to improve the euphemism classification: 1. A Combination of lexical n-gram features 2.Three Feature-weighting schemes 3.Deep learning classification algorithms. In this paper, four machine learning (J48, Random Forest, Multinomial Naïve Bayes, and SVM) and three deep learning algorithms (Multilayer Perceptron, Convolutional Neural Network, and Long Short-Term Memory) are investigated with various combinations of features and feature weighting schemes to classify the sentences. According to our experiments, Convolutional Neural Network (CNN) achieves precision 95.43%, recall 95.06%, F-Score 95.25%, accuracy 95.26%, and Kappa 0.905 by using a combination of unigram and bigram features with TF-IDF feature weighting scheme in the classification of euphemism. These results of experiments show CNN with a strong combination of unigram and bigram features set with TF-IDF feature weighting scheme outperforms another six classification algorithms in detecting the euphemisms in our dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优美的碧琴完成签到,获得积分10
1秒前
舒心的水卉完成签到,获得积分10
1秒前
Purplesky完成签到,获得积分10
1秒前
wzy完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
my完成签到,获得积分10
2秒前
liyuxuan完成签到,获得积分10
2秒前
hentai完成签到,获得积分10
2秒前
小许会更好完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
dong应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
英姑应助科研通管家采纳,获得10
5秒前
LJ发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
6秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015806
求助须知:如何正确求助?哪些是违规求助? 3555777
关于积分的说明 11318714
捐赠科研通 3288911
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027