Research on Prediction Method of Hydraulic Pump Remaining Useful Life Based on KPCA and JITL

核主成分分析 主成分分析 支持向量机 模式识别(心理学) 数据挖掘 计算机科学 欧几里德距离 人工智能 核(代数) 数学 核方法 组合数学
作者
Zhenbao Li,Wanlu Jiang,Sheng Zhang,Decai Xue,Shuqing Zhang
出处
期刊:Applied sciences [MDPI AG]
卷期号:11 (20): 9389-9389 被引量:9
标识
DOI:10.3390/app11209389
摘要

Hydraulic pumps are commonly used; however, it is difficult to predict their remaining useful life (RUL) effectively. A new method based on kernel principal component analysis (KPCA) and the just in time learning (JITL) method was proposed to solve this problem. First, as the research object, the non-substitute time tac-tail life experiment pressure signals of gear pumps were collected. Following the removal and denoising of the DC component of the pressure signals by the wavelet packet method, multiple characteristic indices were extracted. Subsequently, the KPCA method was used to calculate the weighted fusion of the selected feature indices. Then the state evaluation indices were extracted to characterize the performance degradation of the gear pumps. Finally, an RUL prediction method based on the k-vector nearest neighbor (k-VNN) and JITL methods was proposed. The k-VNN method refers to both the Euclidean distance and angle relationship between two vectors as the basis for modeling. The prediction results verified the feasibility and effectiveness of the proposed method. Compared to the traditional JITL RUL prediction method based on the k-nearest neighbor algorithm, the proposed prediction model of the RUL of a gear pump presents a higher prediction accuracy. The method proposed in this paper is expected to be applied to the RUL prediction and condition monitoring and has broad application prospects and wide applicability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tzy完成签到,获得积分10
刚刚
美满寄松发布了新的文献求助10
1秒前
Dharma_Bums完成签到,获得积分10
3秒前
echo发布了新的文献求助10
3秒前
xiaohu完成签到,获得积分10
4秒前
szy完成签到,获得积分10
4秒前
5秒前
丫丫完成签到 ,获得积分10
5秒前
小奇发布了新的文献求助10
6秒前
积极的万言完成签到,获得积分10
6秒前
剑指天涯完成签到 ,获得积分10
7秒前
朴素绿真完成签到,获得积分10
7秒前
美满寄松完成签到,获得积分10
9秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
蔡从安发布了新的文献求助10
11秒前
12秒前
黎明完成签到,获得积分10
13秒前
小仙女完成签到,获得积分10
14秒前
14秒前
rookie完成签到 ,获得积分20
16秒前
小二郎应助蔡从安采纳,获得10
16秒前
科研通AI2S应助蔡从安采纳,获得10
16秒前
今天也要开心Y完成签到,获得积分10
16秒前
十六月亮发布了新的文献求助10
17秒前
17秒前
19秒前
mathmotive完成签到,获得积分10
19秒前
英俊的铭应助立军采纳,获得10
19秒前
19秒前
传奇3应助端庄的白开水采纳,获得10
20秒前
慕青应助星星采纳,获得10
20秒前
crookshanks88完成签到,获得积分10
20秒前
Xx完成签到,获得积分10
21秒前
十六月亮完成签到,获得积分10
22秒前
哈哈呀完成签到 ,获得积分10
22秒前
天天快乐应助研友_LBryAL采纳,获得10
22秒前
Leonardi应助鲤鱼盼望采纳,获得200
23秒前
24秒前
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143695
求助须知:如何正确求助?哪些是违规求助? 2795199
关于积分的说明 7813564
捐赠科研通 2451202
什么是DOI,文献DOI怎么找? 1304353
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601393