Towards a Unified Middle Modality Learning for Visible-Infrared Person Re-Identification

模态(人机交互) 人工智能 计算机科学 模式 模式识别(心理学) 计算机视觉 社会科学 社会学
作者
Yukang Zhang,Yan Yan,Yang Lu,Hanzi Wang
标识
DOI:10.1145/3474085.3475250
摘要

Visible-infrared person re-identification (VI-ReID) aims to search identities of pedestrians across different spectra. In this task, one of the major challenges is the modality discrepancy between the visible (VIS) and infrared (IR) images. Some state-of-the-art methods try to design complex networks or generative methods to mitigate the modality discrepancy while ignoring the highly non-linear relationship between the two modalities of VIS and IR. In this paper, we propose a non-linear middle modality generator (MMG), which helps to reduce the modality discrepancy. Our MMG can effectively project VIS and IR images into a unified middle modality image (UMMI) space to generate middle-modality (M-modality) images. The generated M-modality images and the original images are fed into the backbone network to reduce the modality discrepancy.Furthermore, in order to pull together the two types of M-modality images generated from the VIS and IR images in the UMMI space, we propose a distribution consistency loss (DCL) to make the modality distribution of the generated M-modalities images as consistent as possible. Finally, we propose a middle modality network (MMN) to further enhance the discrimination and richness of features in an explicit manner. Extensive experiments have been conducted to validate the superiority of MMN for VI-ReID over some state-of-the-art methods on two challenging datasets. The gain of MMN is more than 11.1% and 8.4% in terms of Rank-1 and mAP, respectively, even compared with the latest state-of-the-art methods on the SYSU-MM01 dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
三木发布了新的文献求助10
1秒前
香蕉觅云应助anny2022采纳,获得10
1秒前
落后秋柳发布了新的文献求助10
2秒前
kolico完成签到,获得积分10
3秒前
3秒前
小高发布了新的文献求助10
3秒前
皓轩发布了新的文献求助10
4秒前
向暖完成签到,获得积分10
4秒前
科研通AI5应助洛敏夕5743采纳,获得10
4秒前
FashionBoy应助梦与叶落采纳,获得10
4秒前
明理楷瑞发布了新的文献求助10
5秒前
华仔应助学习学习学习采纳,获得10
5秒前
领导范儿应助zzz采纳,获得10
5秒前
6秒前
6秒前
Chuwei发布了新的文献求助10
6秒前
渡繁完成签到,获得积分10
6秒前
6秒前
mostspecial完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
7秒前
煎蛋完成签到,获得积分10
7秒前
NexusExplorer应助猕猴桃汁er采纳,获得10
7秒前
端庄幻桃完成签到 ,获得积分10
8秒前
8秒前
小二郎应助红花牌凯塞路采纳,获得10
8秒前
8秒前
熊仔一百完成签到,获得积分10
9秒前
9秒前
完美世界应助7473采纳,获得10
9秒前
1335804518完成签到 ,获得积分10
9秒前
10秒前
10秒前
10秒前
古柒柒完成签到,获得积分10
10秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3731508
求助须知:如何正确求助?哪些是违规求助? 3275792
关于积分的说明 9994001
捐赠科研通 2991311
什么是DOI,文献DOI怎么找? 1641495
邀请新用户注册赠送积分活动 779877
科研通“疑难数据库(出版商)”最低求助积分说明 748480