亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Towards a Unified Middle Modality Learning for Visible-Infrared Person Re-Identification

模态(人机交互) 人工智能 计算机科学 模式 模式识别(心理学) 计算机视觉 社会科学 社会学
作者
Yukang Zhang,Yan Yan,Yang Lu,Hanzi Wang
标识
DOI:10.1145/3474085.3475250
摘要

Visible-infrared person re-identification (VI-ReID) aims to search identities of pedestrians across different spectra. In this task, one of the major challenges is the modality discrepancy between the visible (VIS) and infrared (IR) images. Some state-of-the-art methods try to design complex networks or generative methods to mitigate the modality discrepancy while ignoring the highly non-linear relationship between the two modalities of VIS and IR. In this paper, we propose a non-linear middle modality generator (MMG), which helps to reduce the modality discrepancy. Our MMG can effectively project VIS and IR images into a unified middle modality image (UMMI) space to generate middle-modality (M-modality) images. The generated M-modality images and the original images are fed into the backbone network to reduce the modality discrepancy.Furthermore, in order to pull together the two types of M-modality images generated from the VIS and IR images in the UMMI space, we propose a distribution consistency loss (DCL) to make the modality distribution of the generated M-modalities images as consistent as possible. Finally, we propose a middle modality network (MMN) to further enhance the discrimination and richness of features in an explicit manner. Extensive experiments have been conducted to validate the superiority of MMN for VI-ReID over some state-of-the-art methods on two challenging datasets. The gain of MMN is more than 11.1% and 8.4% in terms of Rank-1 and mAP, respectively, even compared with the latest state-of-the-art methods on the SYSU-MM01 dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
11秒前
冷酷的鹏涛完成签到,获得积分10
13秒前
15秒前
墨薄凉完成签到 ,获得积分10
26秒前
轻松一曲应助inRe采纳,获得10
27秒前
hlq完成签到 ,获得积分10
44秒前
xuzb完成签到,获得积分10
1分钟前
1分钟前
龙龙冲发布了新的文献求助20
1分钟前
美满尔蓝完成签到,获得积分10
1分钟前
纪言七许完成签到 ,获得积分10
1分钟前
小马甲应助龙龙冲采纳,获得10
1分钟前
英勇的醉蓝完成签到,获得积分20
1分钟前
qinglongtsmc发布了新的文献求助10
1分钟前
ding应助英勇的醉蓝采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
inRe发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
SiboN发布了新的文献求助10
2分钟前
xuzb发布了新的文献求助10
2分钟前
qinglongtsmc完成签到,获得积分10
3分钟前
alanbike完成签到,获得积分10
3分钟前
十字水瓶关注了科研通微信公众号
3分钟前
搜集达人应助闪闪万言采纳,获得10
3分钟前
null应助科研通管家采纳,获得10
3分钟前
null应助科研通管家采纳,获得10
3分钟前
null应助科研通管家采纳,获得10
3分钟前
CodeCraft应助科研通管家采纳,获得10
3分钟前
bkagyin应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
王王碎冰冰完成签到,获得积分10
3分钟前
十字水瓶发布了新的文献求助10
3分钟前
我是老大应助王王碎冰冰采纳,获得10
4分钟前
花陵完成签到 ,获得积分10
4分钟前
ZanE完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628172
求助须知:如何正确求助?哪些是违规求助? 4715898
关于积分的说明 14963806
捐赠科研通 4785879
什么是DOI,文献DOI怎么找? 2555413
邀请新用户注册赠送积分活动 1516720
关于科研通互助平台的介绍 1477252