Towards a Unified Middle Modality Learning for Visible-Infrared Person Re-Identification

模态(人机交互) 人工智能 计算机科学 模式 模式识别(心理学) 计算机视觉 社会科学 社会学
作者
Yukang Zhang,Yan Yan,Yang Lu,Hanzi Wang
标识
DOI:10.1145/3474085.3475250
摘要

Visible-infrared person re-identification (VI-ReID) aims to search identities of pedestrians across different spectra. In this task, one of the major challenges is the modality discrepancy between the visible (VIS) and infrared (IR) images. Some state-of-the-art methods try to design complex networks or generative methods to mitigate the modality discrepancy while ignoring the highly non-linear relationship between the two modalities of VIS and IR. In this paper, we propose a non-linear middle modality generator (MMG), which helps to reduce the modality discrepancy. Our MMG can effectively project VIS and IR images into a unified middle modality image (UMMI) space to generate middle-modality (M-modality) images. The generated M-modality images and the original images are fed into the backbone network to reduce the modality discrepancy.Furthermore, in order to pull together the two types of M-modality images generated from the VIS and IR images in the UMMI space, we propose a distribution consistency loss (DCL) to make the modality distribution of the generated M-modalities images as consistent as possible. Finally, we propose a middle modality network (MMN) to further enhance the discrimination and richness of features in an explicit manner. Extensive experiments have been conducted to validate the superiority of MMN for VI-ReID over some state-of-the-art methods on two challenging datasets. The gain of MMN is more than 11.1% and 8.4% in terms of Rank-1 and mAP, respectively, even compared with the latest state-of-the-art methods on the SYSU-MM01 dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助团结采纳,获得10
刚刚
汉堡包应助鱼粉采纳,获得10
1秒前
赵yy应助朴素雁凡采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
能HJY完成签到,获得积分10
2秒前
科研通AI6应助2306520采纳,获得10
4秒前
5秒前
nazi完成签到,获得积分10
6秒前
传奇3应助fool采纳,获得10
7秒前
8秒前
NexusExplorer应助宁静致远采纳,获得10
8秒前
9秒前
ZY完成签到 ,获得积分10
10秒前
薛定谔的猫完成签到,获得积分10
10秒前
nangua发布了新的文献求助10
10秒前
无l发布了新的文献求助30
11秒前
11秒前
12秒前
12秒前
12秒前
jsh完成签到,获得积分10
13秒前
王少通发布了新的文献求助10
13秒前
陈大星啊发布了新的文献求助30
13秒前
深情安青应助lu2025采纳,获得30
14秒前
大梨完成签到 ,获得积分10
14秒前
15秒前
15秒前
欧雪发布了新的文献求助10
16秒前
17秒前
17秒前
团结发布了新的文献求助10
17秒前
17秒前
19秒前
20秒前
鱼粉发布了新的文献求助10
20秒前
Lucas应助谨慎鹰采纳,获得10
20秒前
21秒前
学术学徒发布了新的文献求助10
21秒前
21秒前
高分求助中
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5240292
求助须知:如何正确求助?哪些是违规求助? 4407460
关于积分的说明 13718708
捐赠科研通 4276138
什么是DOI,文献DOI怎么找? 2346403
邀请新用户注册赠送积分活动 1343568
关于科研通互助平台的介绍 1301572