Towards a Unified Middle Modality Learning for Visible-Infrared Person Re-Identification

模态(人机交互) 人工智能 计算机科学 模式 模式识别(心理学) 计算机视觉 社会科学 社会学
作者
Yukang Zhang,Yan Yan,Yang Lu,Hanzi Wang
标识
DOI:10.1145/3474085.3475250
摘要

Visible-infrared person re-identification (VI-ReID) aims to search identities of pedestrians across different spectra. In this task, one of the major challenges is the modality discrepancy between the visible (VIS) and infrared (IR) images. Some state-of-the-art methods try to design complex networks or generative methods to mitigate the modality discrepancy while ignoring the highly non-linear relationship between the two modalities of VIS and IR. In this paper, we propose a non-linear middle modality generator (MMG), which helps to reduce the modality discrepancy. Our MMG can effectively project VIS and IR images into a unified middle modality image (UMMI) space to generate middle-modality (M-modality) images. The generated M-modality images and the original images are fed into the backbone network to reduce the modality discrepancy.Furthermore, in order to pull together the two types of M-modality images generated from the VIS and IR images in the UMMI space, we propose a distribution consistency loss (DCL) to make the modality distribution of the generated M-modalities images as consistent as possible. Finally, we propose a middle modality network (MMN) to further enhance the discrimination and richness of features in an explicit manner. Extensive experiments have been conducted to validate the superiority of MMN for VI-ReID over some state-of-the-art methods on two challenging datasets. The gain of MMN is more than 11.1% and 8.4% in terms of Rank-1 and mAP, respectively, even compared with the latest state-of-the-art methods on the SYSU-MM01 dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助罗瑞采纳,获得10
1秒前
鑫7发布了新的文献求助10
2秒前
2秒前
4秒前
蓝精灵关注了科研通微信公众号
4秒前
能量球发布了新的文献求助10
4秒前
5秒前
5秒前
Bonnie发布了新的文献求助10
7秒前
hahaha发布了新的文献求助10
7秒前
遠山完成签到,获得积分10
7秒前
木弈金牛发布了新的文献求助10
8秒前
李健应助林一采纳,获得10
8秒前
冷酷忆山发布了新的文献求助10
8秒前
沉静一刀完成签到 ,获得积分10
9秒前
nana完成签到,获得积分10
9秒前
9秒前
10秒前
13秒前
AAA完成签到,获得积分10
13秒前
14秒前
哈哈哈哈哈完成签到,获得积分10
14秒前
曾高高发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
16秒前
大个应助尤静柏采纳,获得10
17秒前
17秒前
负责的花瓣应助杨b采纳,获得10
17秒前
18秒前
酒醉的蝴蝶完成签到 ,获得积分10
20秒前
木杉发布了新的文献求助10
21秒前
林一发布了新的文献求助10
21秒前
hahaha发布了新的文献求助10
21秒前
木弈金牛完成签到,获得积分10
21秒前
相信相信的力量完成签到,获得积分10
22秒前
学习吧xy完成签到,获得积分10
24秒前
25秒前
乐乐应助flora采纳,获得10
25秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248068
求助须知:如何正确求助?哪些是违规求助? 2891382
关于积分的说明 8267323
捐赠科研通 2559520
什么是DOI,文献DOI怎么找? 1388337
科研通“疑难数据库(出版商)”最低求助积分说明 650718
邀请新用户注册赠送积分活动 627671