数学
聚类系数
外稃(植物学)
聚类分析
图形
组合数学
拉普拉斯算子
约束(计算机辅助设计)
二部图
计算机科学
算法
拉普拉斯矩阵
子空间拓扑
理论计算机科学
人工智能
生态学
数学分析
几何学
禾本科
生物
作者
Feiping Nie,Wei Chang,Rong Wang,Xuelong Li
标识
DOI:10.1109/tcyb.2021.3113520
摘要
In this article, we focus on utilizing the idea of co-clustering algorithms to address the subspace clustering problem. In recent years, co-clustering methods have been developed greatly with many important applications, such as document clustering and gene expression analysis. Different from the traditional graph-based methods, co-clustering can utilize the bipartite graph to extract the duality relationship between samples and features. It means that the bipartite graph can obtain more information than other traditional graph methods. Therefore, we proposed a novel method to handle the subspace clustering problem by combining dictionary learning with a bipartite graph under the constraint of the (normalized) Laplacian rank. Besides, to avoid the effect of redundant information hiding in the data, the original data matrix is not used as the static dictionary in our model. By updating the dictionary matrix under the sparse constraint, we can obtain a better coefficient matrix to construct the bipartite graph. Based on Theorem 2 and Lemma 1, we further speed up our algorithm. Experimental results on both synthetic and benchmark datasets demonstrate the superior effectiveness and stability of our model.
科研通智能强力驱动
Strongly Powered by AbleSci AI