Deep Neural Network-based Optimization Framework for Safety Evacuation Route during Toxic Gas Leak Incidents

泄漏 计算机科学 整数规划 人工神经网络 灵敏度(控制系统) 替代模型 气体泄漏 应急计划 管道(软件) 运筹学 工程类 人工智能 机器学习 算法 环境工程 计算机安全 有机化学 化学 程序设计语言 电子工程
作者
Sang-Beom Seo,Young-Gak Yoon,Jusung Lee,Jonggeol Na,Chul‐Jin Lee
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:218: 108102-108102 被引量:27
标识
DOI:10.1016/j.ress.2021.108102
摘要

Evacuation planning is important for reducing casualties in toxic gas leak incidents. However, most evacuation plans are too qualitative to be applied to unexpected practical situations. Here, we suggest an evacuation route proposal system based on a quantitative risk evaluation that provides the safest route for individual evacuees by predicting dynamic gas dispersion with a high accuracy and short calculation time. Detailed evacuation scenarios, including weather conditions, leak intensity, and evacuee information, were considered. The proposed system evaluates the quantitative risk in the affected area using a deep neural network surrogate model to determine optimal evacuation routes by integer programming. The surrogate model was trained using data from computational fluid dynamics simulations. A variational autoencoder was applied to extract the geometric features of the affected area. The predicted risk was combined with linearized integer programming to determine the optimal path in a predefined road network. A leak scenario of an ammonia gas pipeline in a petrochemical complex was used for the case study. The results show that the developed model offers the safest route within a few seconds with minimum risk. The developed model was applied to a sensitivity analysis to determine variable influences and safe shelter locations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助kangkang采纳,获得10
1秒前
1秒前
cxd发布了新的文献求助10
1秒前
李健应助暮沐采纳,获得10
3秒前
4秒前
小吴搞科研完成签到,获得积分10
5秒前
Sheila发布了新的文献求助10
6秒前
林夕完成签到,获得积分10
6秒前
6秒前
10秒前
11秒前
冰红茶发布了新的文献求助10
11秒前
12秒前
暮沐完成签到,获得积分10
13秒前
方赫然应助yy采纳,获得10
13秒前
Lotus发布了新的文献求助10
13秒前
13秒前
14秒前
wing完成签到 ,获得积分10
14秒前
Citrus发布了新的文献求助10
14秒前
快乐的雨竹完成签到,获得积分10
15秒前
传奇3应助无聊的无施采纳,获得10
15秒前
ChristineShao发布了新的文献求助30
15秒前
晨芒完成签到,获得积分10
16秒前
魄魄发布了新的文献求助10
16秒前
17秒前
8R60d8应助zhang_23采纳,获得30
17秒前
无情的咖啡豆完成签到,获得积分10
17秒前
嘉博学长发布了新的文献求助10
18秒前
聪聪发布了新的文献求助20
18秒前
Sheila完成签到 ,获得积分10
18秒前
wanci应助siliang采纳,获得30
19秒前
环秋完成签到,获得积分10
19秒前
wynn发布了新的文献求助10
19秒前
科研鸟发布了新的文献求助10
20秒前
阳光傲菡完成签到 ,获得积分10
20秒前
20秒前
白菜发布了新的文献求助10
22秒前
22秒前
林木森完成签到 ,获得积分10
23秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 500
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233820
求助须知:如何正确求助?哪些是违规求助? 2880284
关于积分的说明 8214616
捐赠科研通 2547734
什么是DOI,文献DOI怎么找? 1377175
科研通“疑难数据库(出版商)”最低求助积分说明 647789
邀请新用户注册赠送积分活动 623197