克里金
地质统计学
反距离权重法
均方误差
背景(考古学)
外推法
空气质量指数
计算机科学
数据挖掘
加权
统计
环境科学
遥感
数学
地理
气象学
多元插值
空间变异性
医学
放射科
考古
双线性插值
作者
Yacine Mohamed Idir,Olivier Orfila,Vincent Judalet,Sagot Benoit,Patrice Chatellier
出处
期刊:Sensors
[MDPI AG]
日期:2021-07-09
卷期号:21 (14): 4717-4717
被引量:12
摘要
With the advancement of technology and the arrival of miniaturized environmental sensors that offer greater performance, the idea of building mobile network sensing for air quality has quickly emerged to increase our knowledge of air pollution in urban environments. However, with these new techniques, the difficulty of building mathematical models capable of aggregating all these data sources in order to provide precise mapping of air quality arises. In this context, we explore the spatio-temporal geostatistics methods as a solution for such a problem and evaluate three different methods: Simple Kriging (SK) in residuals, Ordinary Kriging (OK), and Kriging with External Drift (KED). On average, geostatistical models showed 26.57% improvement in the Root Mean Squared Error (RMSE) compared to the standard Inverse Distance Weighting (IDW) technique in interpolating scenarios (27.94% for KED, 26.05% for OK, and 25.71% for SK). The results showed less significant scores in extrapolating scenarios (a 12.22% decrease in the RMSE for geostatisical models compared to IDW). We conclude that univariable geostatistics is suitable for interpolating this type of data but is less appropriate for an extrapolation of non-sampled places since it does not create any information.
科研通智能强力驱动
Strongly Powered by AbleSci AI