A predictive clinical-radiomics nomogram for diagnosing of axial spondyloarthritis using MRI and clinical risk factors

医学 列线图 无线电技术 放射科 内科学 曲线下面积 接收机工作特性 逻辑回归 队列
作者
Lusi Ye,Shouliang Miao,Qin Xiao,Yuncai Liu,Hongyan Tang,Bingyu Li,Jinjin Liu,Dan Chen
出处
期刊:Rheumatology [Oxford University Press]
卷期号:61 (4): 1440-1447 被引量:20
标识
DOI:10.1093/rheumatology/keab542
摘要

Construct and validate a nomogram model integrating the radiomics features and the clinical risk factors to differentiating axial spondyloarthritis (axSpA) in low back pain patients undergone sacroiliac joint (SIJ)-MRI.A total of 638 patients confirmed as axSpA (n = 424) or non-axSpA (n = 214) who were randomly divided into training (n = 447) and validation cohorts (n = 191). Optimal radiomics signatures were constructed from the 3.0 T SIJ-MRI using maximum relevance-minimum redundancy (mRMR) and the least absolute shrinkage and selection operator (LASSO) algorithm in the training cohort. We also included six clinical risk predictors to build the clinical model. Incorporating the independent clinical factors and Rad-score, a nomogram model was constructed by multivariable logistic regression analysis. The performance of the clinical, Rad-score, and nomogram models were evaluated by ROC analysis, calibration curve and decision curve analysis (DCA).A total of 1316 features were extracted and reduced to 15 features to build the Rad-score. The Rad-score allowed a good discrimination in the training (AUC, 0.82; 95% CI: 0.77, 0.86) and the validation cohort (AUC, 0.82; 95% CI: 0.76, 0.88). The clinical-radiomics nomogram model also showed favourable discrimination in the training (AUC, 0.90; 95% CI: 0.86, 0.93) and the validation cohort (AUC, 0.90; 95% CI: 0.85, 0.94). Calibration curves (P >0.05) and DCA demonstrated the nomogram was useful for axSpA diagnosis in the clinical environment.The study proposed a radiomics model was able to separate axSpA and non-axSpA. The clinical-radiomics nomogram can increase the efficacy for differentiating axSpA, which might facilitate clinical decision-making process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
快乐大炮发布了新的文献求助30
1秒前
2秒前
box1221完成签到,获得积分10
2秒前
2秒前
阿九发布了新的文献求助10
4秒前
崔双艳发布了新的文献求助10
4秒前
研友_VZG7GZ应助铌123采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
7秒前
7秒前
zhangjin2969发布了新的文献求助10
7秒前
愤怒的小鸽子完成签到,获得积分10
7秒前
张楚岚发布了新的文献求助10
7秒前
8秒前
高唐发布了新的文献求助10
8秒前
9秒前
9秒前
Hello应助yaoyao采纳,获得10
10秒前
会撒娇的靖仇完成签到,获得积分20
10秒前
CipherSage应助echo采纳,获得10
11秒前
11秒前
wr完成签到 ,获得积分10
11秒前
赶紧毕业完成签到,获得积分10
12秒前
yao发布了新的文献求助10
13秒前
13秒前
研友_VZG7GZ应助崔双艳采纳,获得10
13秒前
安之若素发布了新的文献求助20
13秒前
快乐大炮完成签到,获得积分10
14秒前
浮游应助小白采纳,获得10
14秒前
15秒前
16秒前
xiaobai应助Auoroa采纳,获得10
16秒前
16秒前
搜集达人应助含糊的夜绿采纳,获得10
17秒前
17秒前
乌卡卡发布了新的文献求助10
18秒前
18秒前
Guofa.完成签到 ,获得积分10
19秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442393
求助须知:如何正确求助?哪些是违规求助? 4552598
关于积分的说明 14237646
捐赠科研通 4473916
什么是DOI,文献DOI怎么找? 2451715
邀请新用户注册赠送积分活动 1442571
关于科研通互助平台的介绍 1418541