A predictive clinical-radiomics nomogram for diagnosing of axial spondyloarthritis using MRI and clinical risk factors

医学 列线图 无线电技术 放射科 内科学 曲线下面积 接收机工作特性 逻辑回归 队列
作者
Lusi Ye,Shouliang Miao,Qin Xiao,Yuncai Liu,Hongyan Tang,Bingyu Li,Jinjin Liu,Dan Chen
出处
期刊:Rheumatology [Oxford University Press]
卷期号:61 (4): 1440-1447 被引量:20
标识
DOI:10.1093/rheumatology/keab542
摘要

Construct and validate a nomogram model integrating the radiomics features and the clinical risk factors to differentiating axial spondyloarthritis (axSpA) in low back pain patients undergone sacroiliac joint (SIJ)-MRI.A total of 638 patients confirmed as axSpA (n = 424) or non-axSpA (n = 214) who were randomly divided into training (n = 447) and validation cohorts (n = 191). Optimal radiomics signatures were constructed from the 3.0 T SIJ-MRI using maximum relevance-minimum redundancy (mRMR) and the least absolute shrinkage and selection operator (LASSO) algorithm in the training cohort. We also included six clinical risk predictors to build the clinical model. Incorporating the independent clinical factors and Rad-score, a nomogram model was constructed by multivariable logistic regression analysis. The performance of the clinical, Rad-score, and nomogram models were evaluated by ROC analysis, calibration curve and decision curve analysis (DCA).A total of 1316 features were extracted and reduced to 15 features to build the Rad-score. The Rad-score allowed a good discrimination in the training (AUC, 0.82; 95% CI: 0.77, 0.86) and the validation cohort (AUC, 0.82; 95% CI: 0.76, 0.88). The clinical-radiomics nomogram model also showed favourable discrimination in the training (AUC, 0.90; 95% CI: 0.86, 0.93) and the validation cohort (AUC, 0.90; 95% CI: 0.85, 0.94). Calibration curves (P >0.05) and DCA demonstrated the nomogram was useful for axSpA diagnosis in the clinical environment.The study proposed a radiomics model was able to separate axSpA and non-axSpA. The clinical-radiomics nomogram can increase the efficacy for differentiating axSpA, which might facilitate clinical decision-making process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助hkh采纳,获得10
1秒前
yuli应助hkh采纳,获得10
1秒前
浮游应助hkh采纳,获得10
1秒前
浮游应助hkh采纳,获得10
1秒前
Zx_1993应助hkh采纳,获得10
1秒前
浮游应助hkh采纳,获得10
1秒前
科研通AI2S应助hkh采纳,获得10
1秒前
浮游应助hkh采纳,获得10
1秒前
浮游应助hkh采纳,获得10
1秒前
手抓饼啊发布了新的文献求助10
1秒前
浮游应助hkh采纳,获得10
1秒前
2秒前
隐形曼青应助木木采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
123木头人发布了新的文献求助10
5秒前
神勇若雁发布了新的文献求助10
5秒前
斧王发布了新的文献求助10
6秒前
浮游应助kitty采纳,获得10
8秒前
刻苦的糖豆完成签到,获得积分10
10秒前
hey完成签到,获得积分10
12秒前
锅里有两条鱼完成签到 ,获得积分10
12秒前
12秒前
14秒前
16秒前
吡嗪完成签到,获得积分10
17秒前
大脸猫完成签到 ,获得积分10
17秒前
天天快乐应助诸葛一笑采纳,获得10
18秒前
19秒前
sscihard完成签到,获得积分10
20秒前
沉迷科研无法自拔完成签到,获得积分10
20秒前
20秒前
高贵路灯完成签到,获得积分10
23秒前
缥缈的寒梦完成签到,获得积分10
24秒前
123木头人完成签到,获得积分20
25秒前
量子星尘发布了新的文献求助10
25秒前
25秒前
Amelie发布了新的文献求助10
26秒前
26秒前
FashionBoy应助科研通管家采纳,获得10
26秒前
LYSM应助科研通管家采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419734
求助须知:如何正确求助?哪些是违规求助? 4535018
关于积分的说明 14147731
捐赠科研通 4451737
什么是DOI,文献DOI怎么找? 2441853
邀请新用户注册赠送积分活动 1433423
关于科研通互助平台的介绍 1410663