A predictive clinical-radiomics nomogram for diagnosing of axial spondyloarthritis using MRI and clinical risk factors

医学 列线图 无线电技术 放射科 内科学 曲线下面积 接收机工作特性 逻辑回归 队列
作者
Lusi Ye,Shouliang Miao,Qin Xiao,Yuncai Liu,Hongyan Tang,Bingyu Li,Jinjin Liu,Dan Chen
出处
期刊:Rheumatology [Oxford University Press]
卷期号:61 (4): 1440-1447 被引量:20
标识
DOI:10.1093/rheumatology/keab542
摘要

Construct and validate a nomogram model integrating the radiomics features and the clinical risk factors to differentiating axial spondyloarthritis (axSpA) in low back pain patients undergone sacroiliac joint (SIJ)-MRI.A total of 638 patients confirmed as axSpA (n = 424) or non-axSpA (n = 214) who were randomly divided into training (n = 447) and validation cohorts (n = 191). Optimal radiomics signatures were constructed from the 3.0 T SIJ-MRI using maximum relevance-minimum redundancy (mRMR) and the least absolute shrinkage and selection operator (LASSO) algorithm in the training cohort. We also included six clinical risk predictors to build the clinical model. Incorporating the independent clinical factors and Rad-score, a nomogram model was constructed by multivariable logistic regression analysis. The performance of the clinical, Rad-score, and nomogram models were evaluated by ROC analysis, calibration curve and decision curve analysis (DCA).A total of 1316 features were extracted and reduced to 15 features to build the Rad-score. The Rad-score allowed a good discrimination in the training (AUC, 0.82; 95% CI: 0.77, 0.86) and the validation cohort (AUC, 0.82; 95% CI: 0.76, 0.88). The clinical-radiomics nomogram model also showed favourable discrimination in the training (AUC, 0.90; 95% CI: 0.86, 0.93) and the validation cohort (AUC, 0.90; 95% CI: 0.85, 0.94). Calibration curves (P >0.05) and DCA demonstrated the nomogram was useful for axSpA diagnosis in the clinical environment.The study proposed a radiomics model was able to separate axSpA and non-axSpA. The clinical-radiomics nomogram can increase the efficacy for differentiating axSpA, which might facilitate clinical decision-making process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丸子她爸发布了新的文献求助10
刚刚
科研通AI2S应助某某某采纳,获得10
1秒前
1秒前
冷傲静竹完成签到,获得积分10
1秒前
Lucky完成签到,获得积分10
1秒前
机会啊发布了新的文献求助10
2秒前
yy发布了新的文献求助10
3秒前
ecuster完成签到,获得积分10
3秒前
4秒前
wallonce发布了新的文献求助10
4秒前
11完成签到,获得积分10
4秒前
咕噜仔发布了新的文献求助10
5秒前
懵懂的毛豆完成签到,获得积分10
6秒前
加菲丰丰举报求助违规成功
7秒前
小芳举报求助违规成功
7秒前
嗯哼举报求助违规成功
7秒前
7秒前
zz完成签到,获得积分10
7秒前
小二郎应助小小采纳,获得10
8秒前
8秒前
Lucky发布了新的文献求助10
8秒前
小二郎应助霸气的梦露采纳,获得10
9秒前
11秒前
kiko完成签到 ,获得积分10
12秒前
Tutusamo发布了新的文献求助10
12秒前
yy完成签到,获得积分10
13秒前
14秒前
顾矜应助机智的书雪采纳,获得10
15秒前
加菲丰丰举报求助违规成功
16秒前
小芳举报求助违规成功
16秒前
153495159举报求助违规成功
16秒前
16秒前
快乐的伟诚完成签到,获得积分10
17秒前
17秒前
17秒前
汉堡包应助wallonce采纳,获得10
18秒前
19秒前
李爱国应助光亮芷天采纳,获得10
20秒前
tmr发布了新的文献求助10
20秒前
Wzy发布了新的文献求助20
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304234
求助须知:如何正确求助?哪些是违规求助? 2938264
关于积分的说明 8487851
捐赠科研通 2612638
什么是DOI,文献DOI怎么找? 1426821
科研通“疑难数据库(出版商)”最低求助积分说明 662842
邀请新用户注册赠送积分活动 647344