A predictive clinical-radiomics nomogram for diagnosing of axial spondyloarthritis using MRI and clinical risk factors

医学 列线图 无线电技术 放射科 内科学 曲线下面积 接收机工作特性 逻辑回归 队列
作者
Lusi Ye,Shouliang Miao,Qin Xiao,Yuncai Liu,Hongyan Tang,Bingyu Li,Jinjin Liu,Dan Chen
出处
期刊:Rheumatology [Oxford University Press]
卷期号:61 (4): 1440-1447 被引量:20
标识
DOI:10.1093/rheumatology/keab542
摘要

Construct and validate a nomogram model integrating the radiomics features and the clinical risk factors to differentiating axial spondyloarthritis (axSpA) in low back pain patients undergone sacroiliac joint (SIJ)-MRI.A total of 638 patients confirmed as axSpA (n = 424) or non-axSpA (n = 214) who were randomly divided into training (n = 447) and validation cohorts (n = 191). Optimal radiomics signatures were constructed from the 3.0 T SIJ-MRI using maximum relevance-minimum redundancy (mRMR) and the least absolute shrinkage and selection operator (LASSO) algorithm in the training cohort. We also included six clinical risk predictors to build the clinical model. Incorporating the independent clinical factors and Rad-score, a nomogram model was constructed by multivariable logistic regression analysis. The performance of the clinical, Rad-score, and nomogram models were evaluated by ROC analysis, calibration curve and decision curve analysis (DCA).A total of 1316 features were extracted and reduced to 15 features to build the Rad-score. The Rad-score allowed a good discrimination in the training (AUC, 0.82; 95% CI: 0.77, 0.86) and the validation cohort (AUC, 0.82; 95% CI: 0.76, 0.88). The clinical-radiomics nomogram model also showed favourable discrimination in the training (AUC, 0.90; 95% CI: 0.86, 0.93) and the validation cohort (AUC, 0.90; 95% CI: 0.85, 0.94). Calibration curves (P >0.05) and DCA demonstrated the nomogram was useful for axSpA diagnosis in the clinical environment.The study proposed a radiomics model was able to separate axSpA and non-axSpA. The clinical-radiomics nomogram can increase the efficacy for differentiating axSpA, which might facilitate clinical decision-making process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxe完成签到,获得积分10
2秒前
爱笑的汽车发布了新的文献求助200
2秒前
3秒前
3秒前
Nickname发布了新的文献求助200
4秒前
ann发布了新的文献求助10
4秒前
CipherSage应助MU采纳,获得50
4秒前
Yuan完成签到,获得积分10
6秒前
hx666发布了新的文献求助10
7秒前
橙花发布了新的文献求助10
8秒前
西蜀小吏发布了新的文献求助10
8秒前
李爱国应助17采纳,获得10
9秒前
9秒前
9秒前
Frieren完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
Akim应助enen采纳,获得10
11秒前
11秒前
深情安青应助momobobi采纳,获得20
11秒前
失眠翠芙完成签到,获得积分10
12秒前
ting5260发布了新的文献求助10
12秒前
李世航完成签到 ,获得积分20
12秒前
Owen应助自由寻冬采纳,获得10
14秒前
向日葵发布了新的文献求助10
16秒前
Gotye0829完成签到,获得积分10
16秒前
16秒前
aa完成签到,获得积分10
16秒前
李世航关注了科研通微信公众号
17秒前
LCY发布了新的文献求助10
17秒前
hsa_ID发布了新的文献求助10
17秒前
王肖宁完成签到,获得积分10
18秒前
李健应助ting5260采纳,获得10
19秒前
20秒前
芒go发布了新的文献求助10
20秒前
充电宝应助小昊采纳,获得10
20秒前
aa发布了新的文献求助20
22秒前
量子星尘发布了新的文献求助10
22秒前
xxfsx应助kmkz采纳,获得10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513655
求助须知:如何正确求助?哪些是违规求助? 4607855
关于积分的说明 14507128
捐赠科研通 4543421
什么是DOI,文献DOI怎么找? 2489541
邀请新用户注册赠送积分活动 1471503
关于科研通互助平台的介绍 1443477