清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Generative Machine Learning-Based Approach for Inverse Design of Multilayer Metasurfaces

计算机科学 反向 散射 集合(抽象数据类型) 生成语法 过程(计算) 反问题 联轴节(管道) 航程(航空) 图层(电子) 算法 人工智能 光学 材料科学 数学 物理 几何学 数学分析 冶金 复合材料 程序设计语言 操作系统
作者
Parinaz Naseri,Sean V. Hum
出处
期刊:IEEE Transactions on Antennas and Propagation [Institute of Electrical and Electronics Engineers]
卷期号:69 (9): 5725-5739 被引量:114
标识
DOI:10.1109/tap.2021.3060142
摘要

The synthesis of a metasurface exhibiting a specific set of desired scattering properties is a time-consuming and resource-demanding process, which conventionally relies on many cycles of full-wave simulations. It requires an experienced designer to choose the number of the metallic layers, the scatterer shapes and dimensions, and the type and the thickness of the separating substrates. Here, we propose a generative machine learning (ML)-based approach to solve this one-to-many mapping and automate the inverse design of dual- and triple-layer metasurfaces. Using this approach, it is possible to solve multiobjective optimization problems by synthesizing thin structures composed of potentially brand-new scatterer designs, in cases where the inter-layer coupling between the layers is non-negligible and synthesis by traditional methods becomes cumbersome. Various examples to provide specific magnitude and phase responses of $x$- and $y$-polarized scattering coefficients across a frequency range as well as mask-based responses for different metasurface applications are presented to verify the practicality of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
斯提亚拉发布了新的文献求助10
7秒前
9秒前
19秒前
科研通AI6应助liwen采纳,获得10
54秒前
58秒前
龚文亮完成签到,获得积分10
1分钟前
慕青应助狂野宛凝采纳,获得10
1分钟前
常有李完成签到,获得积分10
1分钟前
1分钟前
殷勤的紫槐应助科研通管家采纳,获得200
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
激动的似狮完成签到,获得积分10
1分钟前
tt完成签到,获得积分10
2分钟前
2分钟前
2分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
3分钟前
3分钟前
我是老大应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
狂野宛凝发布了新的文献求助10
3分钟前
4分钟前
4分钟前
领导范儿应助Gryphon采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
Gryphon发布了新的文献求助10
4分钟前
打打应助Gryphon采纳,获得10
4分钟前
5分钟前
liwen发布了新的文献求助10
5分钟前
Gryphon发布了新的文献求助10
5分钟前
领导范儿应助科研通管家采纳,获得10
5分钟前
Gryphon完成签到,获得积分20
5分钟前
5分钟前
5分钟前
小柏学长完成签到,获得积分10
5分钟前
zoomer发布了新的文献求助10
5分钟前
VVS完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554955
求助须知:如何正确求助?哪些是违规求助? 4639554
关于积分的说明 14656343
捐赠科研通 4581473
什么是DOI,文献DOI怎么找? 2512827
邀请新用户注册赠送积分活动 1487527
关于科研通互助平台的介绍 1458503