亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Generative Machine Learning-Based Approach for Inverse Design of Multilayer Metasurfaces

计算机科学 反向 散射 集合(抽象数据类型) 生成语法 过程(计算) 反问题 联轴节(管道) 航程(航空) 图层(电子) 算法 人工智能 光学 材料科学 数学 物理 几何学 数学分析 复合材料 操作系统 冶金 程序设计语言
作者
Parinaz Naseri,Sean V. Hum
出处
期刊:IEEE Transactions on Antennas and Propagation [Institute of Electrical and Electronics Engineers]
卷期号:69 (9): 5725-5739 被引量:114
标识
DOI:10.1109/tap.2021.3060142
摘要

The synthesis of a metasurface exhibiting a specific set of desired scattering properties is a time-consuming and resource-demanding process, which conventionally relies on many cycles of full-wave simulations. It requires an experienced designer to choose the number of the metallic layers, the scatterer shapes and dimensions, and the type and the thickness of the separating substrates. Here, we propose a generative machine learning (ML)-based approach to solve this one-to-many mapping and automate the inverse design of dual- and triple-layer metasurfaces. Using this approach, it is possible to solve multiobjective optimization problems by synthesizing thin structures composed of potentially brand-new scatterer designs, in cases where the inter-layer coupling between the layers is non-negligible and synthesis by traditional methods becomes cumbersome. Various examples to provide specific magnitude and phase responses of $x$- and $y$-polarized scattering coefficients across a frequency range as well as mask-based responses for different metasurface applications are presented to verify the practicality of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助Ahan采纳,获得10
9秒前
可爱慕卉完成签到,获得积分10
9秒前
茶蛋完成签到,获得积分10
14秒前
17秒前
ding应助Nature_Science采纳,获得10
50秒前
1分钟前
失眠幻灵发布了新的文献求助10
1分钟前
1分钟前
1分钟前
向前发布了新的文献求助10
1分钟前
心肝宝贝甜蜜饯完成签到,获得积分10
1分钟前
Chris完成签到 ,获得积分10
1分钟前
冷眸完成签到,获得积分20
1分钟前
独特的念柏完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
无限幻枫发布了新的文献求助10
2分钟前
Daria完成签到 ,获得积分10
2分钟前
小蘑菇应助MAXXIN采纳,获得10
2分钟前
无限幻枫完成签到,获得积分10
2分钟前
2分钟前
MAXXIN完成签到,获得积分20
2分钟前
Lucas应助xuanjiawu采纳,获得10
2分钟前
失眠幻灵完成签到 ,获得积分10
2分钟前
MAXXIN发布了新的文献求助10
2分钟前
2分钟前
2分钟前
大胆的时光完成签到 ,获得积分10
2分钟前
2分钟前
xuanjiawu发布了新的文献求助10
2分钟前
Ahan发布了新的文献求助10
2分钟前
2分钟前
3分钟前
3分钟前
隐形曼青应助keke采纳,获得10
3分钟前
3分钟前
天才幸运鱼完成签到,获得积分10
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606566
求助须知:如何正确求助?哪些是违规求助? 4691039
关于积分的说明 14866783
捐赠科研通 4707575
什么是DOI,文献DOI怎么找? 2542899
邀请新用户注册赠送积分活动 1508211
关于科研通互助平台的介绍 1472276