Dual‐Sites Coordination Engineering of Single Atom Catalysts for Flexible Metal–Air Batteries

过电位 材料科学 双功能 催化作用 金属 碳纤维 析氧 化学工程 纳米技术 Atom(片上系统) 物理化学 电化学 化学 冶金 电极 有机化学 复合材料 嵌入式系统 工程类 复合数 计算机科学
作者
Deshuang Yu,Yanchen Ma,Feng Hu,Chia‐Ching Lin,Linlin Li,Han‐Yi Chen,Xiaopeng Han,Shengjie Peng
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:11 (30) 被引量:334
标识
DOI:10.1002/aenm.202101242
摘要

Abstract Dual‐sites single atom catalysts hold promise for efficiently regulating multiple reaction processes and explicitly explaining the underlying mechanisms. However, delicate atomic engineering for dual‐site single atom catalysts remains a huge challenge. Herein, atomically dispersed Fe‐Ni single atoms embedded in a nitrogen‐doped carbon matrix (FeNi SAs/NC) are successfully developed with extraordinary activity for electrocatalytic oxygen reduction and evolution reactions (ORR/OER). The atomic FeNi SAs/NC catalyst displays high onset potential (0.98 V) and half‐wave potential (0.84 V) for the ORR, as well as, low overpotential of (270 mV) at 10 mA cm −2 for the OER. The density functional theory calculations indicate that the Fe site as the active center can facilitate the four‐electron reaction process, while Ni sites regulate the electronic structure of Fe sites and further reduce the energy barrier of the rate‐determining step. In addition, the nitrogen‐doped carbon matrix prevents the metal atoms from aggregation and corrosion, leading to the improvement of catalyst durability. As a proof of concept, flexible quasi‐solid‐state zinc– and aluminum–air batteries assembled with the FeNi SAs/NC catalyst exhibit superior peak power densities and discharging specific capacities outperforming the commercial Pt/C. This work provides rational guidance for the synthesis of bifunctional electrocatalysts in next‐generation energy devices for flexible consumer electronics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
特兰克斯完成签到,获得积分20
刚刚
米斯特刘完成签到,获得积分20
1秒前
沫沫发布了新的文献求助10
1秒前
R先生发布了新的文献求助50
1秒前
通通通关注了科研通微信公众号
1秒前
snowdrift发布了新的文献求助10
1秒前
英姑应助北挽采纳,获得200
1秒前
kevindeng发布了新的文献求助20
2秒前
yx发布了新的文献求助10
2秒前
3秒前
6680668发布了新的文献求助10
3秒前
baobaonaixi完成签到,获得积分10
3秒前
3秒前
3秒前
三石完成签到 ,获得积分10
3秒前
4秒前
5秒前
5秒前
DAYTOY完成签到,获得积分10
5秒前
6秒前
6秒前
Flllllll完成签到,获得积分10
6秒前
喜悦成威完成签到,获得积分10
6秒前
酷波er应助南佳采纳,获得10
7秒前
7秒前
7秒前
Ava应助yan儿采纳,获得10
7秒前
丘比特应助纯真的莫茗采纳,获得10
7秒前
无花果应助勤恳的素阴采纳,获得10
7秒前
调皮的妙竹完成签到,获得积分10
8秒前
沫沫完成签到,获得积分10
8秒前
wzp发布了新的文献求助10
8秒前
8秒前
程程完成签到,获得积分20
8秒前
打打应助Ll采纳,获得10
8秒前
乐观发卡完成签到,获得积分20
9秒前
安详的帽子完成签到 ,获得积分10
9秒前
9秒前
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762