CathAI: Fully Automated Interpretation of Coronary Angiograms Using Neural Networks.

医学 狭窄 冠状动脉疾病 人工智能 心脏病学 接收机工作特性 放射科 内科学 算法 计算机科学
作者
Robert Avram,Jeffrey E. Olgin,Alvin Wan,Zeeshan Ahmed,Louis Verreault-Julien,Sean Abreau,Derek Wan,Joseph E. Gonzalez,Derek So,Krishan Soni,Geoffrey H. Tison
出处
期刊:Cornell University - arXiv
摘要

Coronary heart disease (CHD) is the leading cause of adult death in the United States and worldwide, and for which the coronary angiography procedure is the primary gateway for diagnosis and clinical management decisions. The standard-of-care for interpretation of coronary angiograms depends upon ad-hoc visual assessment by the physician operator. However, ad-hoc visual interpretation of angiograms is poorly reproducible, highly variable and bias prone. Here we show for the first time that fully-automated angiogram interpretation to estimate coronary artery stenosis is possible using a sequence of deep neural network algorithms. The algorithmic pipeline we developed--called CathAI--achieves state-of-the art performance across the sequence of tasks required to accomplish automated interpretation of unselected, real-world angiograms. CathAI (Algorithms 1-2) demonstrated positive predictive value, sensitivity and F1 score of >=90% to identify the projection angle overall and >=93% for left or right coronary artery angiogram detection, the primary anatomic structures of interest. To predict obstructive coronary artery stenosis (>=70% stenosis), CathAI (Algorithm 4) exhibited an area under the receiver operating characteristic curve (AUC) of 0.862 (95% CI: 0.843-0.880). When externally validated in a healthcare system in another country, CathAI AUC was 0.869 (95% CI: 0.830-0.907) to predict obstructive coronary artery stenosis. Our results demonstrate that multiple purpose-built neural networks can function in sequence to accomplish the complex series of tasks required for automated analysis of real-world angiograms. Deployment of CathAI may serve to increase standardization and reproducibility in coronary stenosis assessment, while providing a robust foundation to accomplish future tasks for algorithmic angiographic interpretation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助核桃采纳,获得30
刚刚
在水一方应助核桃采纳,获得10
刚刚
小马甲应助核桃采纳,获得10
刚刚
4645应助核桃采纳,获得30
刚刚
趣乐多发布了新的文献求助10
刚刚
星星完成签到,获得积分10
1秒前
段舍离完成签到,获得积分10
1秒前
1秒前
ty7889发布了新的文献求助10
2秒前
哆啦的空间站应助zjb采纳,获得10
2秒前
gdh发布了新的文献求助10
2秒前
ljy完成签到,获得积分10
2秒前
zuotenghua123完成签到,获得积分10
3秒前
FashionBoy应助学习。。采纳,获得10
3秒前
3秒前
是柯基不是科技完成签到,获得积分10
3秒前
林林发布了新的文献求助10
3秒前
4秒前
剑指天涯完成签到,获得积分10
4秒前
kash想毕业发布了新的文献求助10
4秒前
研友_VZG7GZ应助Sean采纳,获得10
4秒前
陈阔完成签到 ,获得积分10
5秒前
刘畅发布了新的文献求助10
5秒前
5秒前
SciGPT应助huang采纳,获得10
5秒前
tangzanwayne完成签到 ,获得积分10
5秒前
5秒前
大模型应助乔安采纳,获得10
6秒前
TUTU发布了新的文献求助10
6秒前
小无完成签到,获得积分10
6秒前
myyyyy完成签到 ,获得积分10
6秒前
bkagyin应助cjr采纳,获得10
6秒前
汉堡包应助Lin17采纳,获得10
7秒前
打打应助幸运的靖柔采纳,获得10
8秒前
想飞的猪完成签到,获得积分10
8秒前
fantasy发布了新的文献求助10
8秒前
呆萌芙蓉完成签到 ,获得积分10
8秒前
Jennifer发布了新的文献求助10
8秒前
沐雨清风完成签到,获得积分10
9秒前
衫楠如画完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4927847
求助须知:如何正确求助?哪些是违规求助? 4197159
关于积分的说明 13036921
捐赠科研通 3970018
什么是DOI,文献DOI怎么找? 2175613
邀请新用户注册赠送积分活动 1192676
关于科研通互助平台的介绍 1103447