CathAI: Fully Automated Interpretation of Coronary Angiograms Using Neural Networks.

医学 狭窄 冠状动脉疾病 人工智能 心脏病学 接收机工作特性 放射科 内科学 算法 计算机科学
作者
Robert Avram,Jeffrey E. Olgin,Alvin Wan,Zeeshan Ahmed,Louis Verreault-Julien,Sean Abreau,Derek Wan,Joseph E. Gonzalez,Derek So,Krishan Soni,Geoffrey H. Tison
出处
期刊:Cornell University - arXiv
摘要

Coronary heart disease (CHD) is the leading cause of adult death in the United States and worldwide, and for which the coronary angiography procedure is the primary gateway for diagnosis and clinical management decisions. The standard-of-care for interpretation of coronary angiograms depends upon ad-hoc visual assessment by the physician operator. However, ad-hoc visual interpretation of angiograms is poorly reproducible, highly variable and bias prone. Here we show for the first time that fully-automated angiogram interpretation to estimate coronary artery stenosis is possible using a sequence of deep neural network algorithms. The algorithmic pipeline we developed--called CathAI--achieves state-of-the art performance across the sequence of tasks required to accomplish automated interpretation of unselected, real-world angiograms. CathAI (Algorithms 1-2) demonstrated positive predictive value, sensitivity and F1 score of >=90% to identify the projection angle overall and >=93% for left or right coronary artery angiogram detection, the primary anatomic structures of interest. To predict obstructive coronary artery stenosis (>=70% stenosis), CathAI (Algorithm 4) exhibited an area under the receiver operating characteristic curve (AUC) of 0.862 (95% CI: 0.843-0.880). When externally validated in a healthcare system in another country, CathAI AUC was 0.869 (95% CI: 0.830-0.907) to predict obstructive coronary artery stenosis. Our results demonstrate that multiple purpose-built neural networks can function in sequence to accomplish the complex series of tasks required for automated analysis of real-world angiograms. Deployment of CathAI may serve to increase standardization and reproducibility in coronary stenosis assessment, while providing a robust foundation to accomplish future tasks for algorithmic angiographic interpretation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lion发布了新的文献求助10
刚刚
刚刚
Crayon完成签到,获得积分10
1秒前
1秒前
等待荔枝完成签到,获得积分10
1秒前
悲凉的素发布了新的文献求助10
1秒前
1秒前
衣冠醋小豆完成签到,获得积分10
1秒前
2秒前
苗条蛋挞发布了新的文献求助20
2秒前
yolo完成签到,获得积分10
2秒前
2秒前
一只五条悟完成签到,获得积分10
2秒前
搜集达人应助元冬采纳,获得10
2秒前
2秒前
科研通AI6应助直率翠绿采纳,获得10
2秒前
亢kxh完成签到,获得积分10
2秒前
hjx完成签到,获得积分10
3秒前
Chany发布了新的文献求助10
3秒前
thunder完成签到,获得积分10
4秒前
4秒前
666发布了新的文献求助10
5秒前
顾矜应助糯米饭采纳,获得20
5秒前
细心的荧荧完成签到 ,获得积分10
5秒前
桑晒包完成签到,获得积分10
5秒前
hcai55完成签到,获得积分10
6秒前
pp发布了新的文献求助10
6秒前
geeee完成签到,获得积分10
6秒前
6秒前
6秒前
Ava应助Shawn采纳,获得10
6秒前
鱿鱼完成签到,获得积分10
7秒前
大模型应助神勇的天问采纳,获得10
7秒前
李至安发布了新的文献求助10
7秒前
正己化人应助momo采纳,获得10
7秒前
7秒前
科研通AI6应助乐观的海采纳,获得10
7秒前
7秒前
yu完成签到 ,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402308
求助须知:如何正确求助?哪些是违规求助? 4520855
关于积分的说明 14082461
捐赠科研通 4434876
什么是DOI,文献DOI怎么找? 2434481
邀请新用户注册赠送积分活动 1426661
关于科研通互助平台的介绍 1405415