CathAI: Fully Automated Interpretation of Coronary Angiograms Using Neural Networks.

医学 狭窄 冠状动脉疾病 人工智能 心脏病学 接收机工作特性 放射科 内科学 算法 计算机科学
作者
Robert Avram,Jeffrey E. Olgin,Alvin Wan,Zeeshan Ahmed,Louis Verreault-Julien,Sean Abreau,Derek Wan,Joseph E. Gonzalez,Derek So,Krishan Soni,Geoffrey H. Tison
出处
期刊:Cornell University - arXiv
摘要

Coronary heart disease (CHD) is the leading cause of adult death in the United States and worldwide, and for which the coronary angiography procedure is the primary gateway for diagnosis and clinical management decisions. The standard-of-care for interpretation of coronary angiograms depends upon ad-hoc visual assessment by the physician operator. However, ad-hoc visual interpretation of angiograms is poorly reproducible, highly variable and bias prone. Here we show for the first time that fully-automated angiogram interpretation to estimate coronary artery stenosis is possible using a sequence of deep neural network algorithms. The algorithmic pipeline we developed--called CathAI--achieves state-of-the art performance across the sequence of tasks required to accomplish automated interpretation of unselected, real-world angiograms. CathAI (Algorithms 1-2) demonstrated positive predictive value, sensitivity and F1 score of >=90% to identify the projection angle overall and >=93% for left or right coronary artery angiogram detection, the primary anatomic structures of interest. To predict obstructive coronary artery stenosis (>=70% stenosis), CathAI (Algorithm 4) exhibited an area under the receiver operating characteristic curve (AUC) of 0.862 (95% CI: 0.843-0.880). When externally validated in a healthcare system in another country, CathAI AUC was 0.869 (95% CI: 0.830-0.907) to predict obstructive coronary artery stenosis. Our results demonstrate that multiple purpose-built neural networks can function in sequence to accomplish the complex series of tasks required for automated analysis of real-world angiograms. Deployment of CathAI may serve to increase standardization and reproducibility in coronary stenosis assessment, while providing a robust foundation to accomplish future tasks for algorithmic angiographic interpretation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山月发布了新的文献求助10
刚刚
汉堡包应助松松果采纳,获得10
2秒前
ho完成签到,获得积分10
3秒前
3秒前
111222333完成签到,获得积分10
4秒前
AudreyZ完成签到,获得积分10
4秒前
Tonald Yang发布了新的文献求助10
4秒前
我是老大应助热闹的冬天采纳,获得10
4秒前
吉星高照发布了新的文献求助10
5秒前
6秒前
curtainai完成签到,获得积分10
7秒前
语上完成签到,获得积分10
7秒前
劲爆巧克力完成签到,获得积分10
8秒前
英俊的铭应助泥肿大采纳,获得10
8秒前
wwuu发布了新的文献求助10
8秒前
Russell完成签到,获得积分10
9秒前
9秒前
小二郎应助欢呼小蚂蚁采纳,获得10
10秒前
TZT发布了新的文献求助10
11秒前
真君山山长完成签到,获得积分10
11秒前
12秒前
彭于彦祖应助曾经天德采纳,获得30
13秒前
新雨完成签到 ,获得积分10
13秒前
酷波er应助跳跃的摩托采纳,获得10
14秒前
科研通AI2S应助武雨寒采纳,获得10
15秒前
16秒前
栗爷完成签到,获得积分0
16秒前
吴兰田完成签到,获得积分10
17秒前
wwuu完成签到,获得积分10
17秒前
MAVS完成签到,获得积分10
17秒前
18秒前
20秒前
桥木有舟完成签到,获得积分20
22秒前
欢呼小蚂蚁完成签到,获得积分10
22秒前
qsyds发布了新的文献求助10
23秒前
久伴久爱完成签到 ,获得积分10
23秒前
泥肿大完成签到,获得积分10
25秒前
MYW发布了新的文献求助10
25秒前
25秒前
一久便惯完成签到,获得积分10
26秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3239278
求助须知:如何正确求助?哪些是违规求助? 2884622
关于积分的说明 8234372
捐赠科研通 2552712
什么是DOI,文献DOI怎么找? 1380928
科研通“疑难数据库(出版商)”最低求助积分说明 649099
邀请新用户注册赠送积分活动 624834