On the Effect of k Values and Distance Metrics in KNN Algorithm for Android Malware Detection

Android(操作系统) 恶意软件 计算机科学 移动设备 支持向量机 机器学习 操作系统 嵌入式系统 算法 人工智能
作者
Durmuş Özkan Şahın,Sedat Akleylek,Erdal Kılıç
出处
期刊:Advances in data science and adaptive analysis [World Scientific]
卷期号:13 (03n04) 被引量:1
标识
DOI:10.1142/s2424922x21410011
摘要

There is a remarkable increase in mobile device usage in recent years. The Android operating system is by far the most preferred open-source mobile operating system around the world. Besides, the Android operating system is preferred in many devices on the Internet of Things (IoT) devices are used in many areas of daily life. Smart cities, smart environment, health, home automation, agriculture, and livestock are some of the usage areas. Health is one of the most frequently used areas. Since the Android operating system is both the widely used operating system and open-source, the vast majority of malware released on the market is now designed for Android platforms. Therefore, devices using the Android operating system are under serious threat. In this study, a system that detects malware on Android operating systems based on machine learning is proposed. Besides, feature vectors are created with permissions that have an important place in the security of the Android operating system. Feature vectors created using the k-nearest neighbor algorithm (KNN), one of the machine learning techniques, are given as input to this algorithm, and a classification of malicious software and benign software is provided. In the KNN algorithm, the k value and the distance metric used to find the closest sample directly affect the classification performance. In addition, the study examining the parameters of the KNN algorithm in detail in permission-based studies is limited. For this reason, the performance of the malware detection system is presented comparatively using five different k values and five different distance metrics under different data sets. When the results are examined, it is observed that higher classification performances are obtained when values such as 1, 3 are given to k and metrics such as Euclidean and Minkowski are chosen instead of the Chebyshev distance metric.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻松白秋完成签到,获得积分10
1秒前
无敌鱼发布了新的文献求助10
1秒前
limenglin发布了新的文献求助10
2秒前
2秒前
dudu发布了新的文献求助10
2秒前
张大快乐完成签到 ,获得积分10
4秒前
4秒前
4秒前
乏善可陈发布了新的文献求助10
4秒前
葛聋五发布了新的文献求助10
7秒前
轻松白秋发布了新的文献求助10
7秒前
失眠傲白完成签到,获得积分10
7秒前
pengpeng完成签到,获得积分10
8秒前
cmy完成签到,获得积分10
8秒前
Liao发布了新的文献求助10
9秒前
xxxyt发布了新的文献求助10
10秒前
Mabel完成签到 ,获得积分10
10秒前
大方的若山应助Jeffery426采纳,获得10
12秒前
Cat应助失眠傲白采纳,获得10
13秒前
lz完成签到,获得积分10
14秒前
14秒前
xkhxh完成签到 ,获得积分10
16秒前
冷酷思远发布了新的文献求助10
17秒前
20秒前
周小鱼完成签到 ,获得积分10
22秒前
Liao完成签到,获得积分10
23秒前
大壮完成签到,获得积分10
24秒前
Jiangwei完成签到 ,获得积分10
24秒前
亚当遗传完成签到,获得积分10
24秒前
dudu完成签到 ,获得积分10
26秒前
HOLLYBALL完成签到,获得积分10
26秒前
26秒前
gloval发布了新的文献求助10
28秒前
29秒前
所所应助冷酷思远采纳,获得10
30秒前
坦率完成签到 ,获得积分10
31秒前
云青完成签到,获得积分10
31秒前
水若冰寒发布了新的文献求助10
32秒前
小满完成签到,获得积分10
33秒前
田様应助yyj采纳,获得30
34秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
Introduction to Modern Controls, with illustrations in MATLAB and Python 310
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056768
求助须知:如何正确求助?哪些是违规求助? 2713267
关于积分的说明 7435318
捐赠科研通 2358312
什么是DOI,文献DOI怎么找? 1249347
科研通“疑难数据库(出版商)”最低求助积分说明 607030
版权声明 596259