On the Effect of k Values and Distance Metrics in KNN Algorithm for Android Malware Detection

Android(操作系统) 恶意软件 计算机科学 移动设备 支持向量机 机器学习 操作系统 嵌入式系统 算法 人工智能
作者
Durmuş Özkan Şahın,Sedat Akleylek,Erdal Kılıç
出处
期刊:Advances in data science and adaptive analysis [World Scientific]
卷期号:13 (03n04) 被引量:1
标识
DOI:10.1142/s2424922x21410011
摘要

There is a remarkable increase in mobile device usage in recent years. The Android operating system is by far the most preferred open-source mobile operating system around the world. Besides, the Android operating system is preferred in many devices on the Internet of Things (IoT) devices are used in many areas of daily life. Smart cities, smart environment, health, home automation, agriculture, and livestock are some of the usage areas. Health is one of the most frequently used areas. Since the Android operating system is both the widely used operating system and open-source, the vast majority of malware released on the market is now designed for Android platforms. Therefore, devices using the Android operating system are under serious threat. In this study, a system that detects malware on Android operating systems based on machine learning is proposed. Besides, feature vectors are created with permissions that have an important place in the security of the Android operating system. Feature vectors created using the k-nearest neighbor algorithm (KNN), one of the machine learning techniques, are given as input to this algorithm, and a classification of malicious software and benign software is provided. In the KNN algorithm, the k value and the distance metric used to find the closest sample directly affect the classification performance. In addition, the study examining the parameters of the KNN algorithm in detail in permission-based studies is limited. For this reason, the performance of the malware detection system is presented comparatively using five different k values and five different distance metrics under different data sets. When the results are examined, it is observed that higher classification performances are obtained when values such as 1, 3 are given to k and metrics such as Euclidean and Minkowski are chosen instead of the Chebyshev distance metric.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Oatmeal5888完成签到,获得积分10
1秒前
科研通AI2S应助山茶采纳,获得10
2秒前
科研通AI2S应助realtimes采纳,获得10
2秒前
科研通AI2S应助realtimes采纳,获得10
2秒前
爱笑完成签到,获得积分10
3秒前
恰好完成签到,获得积分10
3秒前
牵墨发布了新的文献求助10
4秒前
moffy完成签到,获得积分10
4秒前
生活的高手完成签到,获得积分10
6秒前
6秒前
sia完成签到 ,获得积分0
6秒前
7秒前
7秒前
爱笑的宝马完成签到,获得积分10
9秒前
ww发布了新的文献求助10
10秒前
大蜥蜴发布了新的文献求助10
10秒前
10秒前
ggwp发布了新的文献求助10
12秒前
fawr完成签到 ,获得积分10
12秒前
12秒前
希望天下0贩的0应助故笺采纳,获得10
12秒前
FDY完成签到,获得积分10
13秒前
共享精神应助窦某采纳,获得10
13秒前
14秒前
ggn完成签到,获得积分10
14秒前
秃头少女猪刚鬣完成签到,获得积分10
14秒前
14秒前
机智发布了新的文献求助10
14秒前
万能图书馆应助竹羽采纳,获得10
14秒前
16秒前
桐桐应助yanice采纳,获得10
17秒前
CMCM完成签到,获得积分10
17秒前
17秒前
xia完成签到,获得积分10
18秒前
xiaogang127发布了新的文献求助10
18秒前
快乐星球发布了新的文献求助20
19秒前
xx发布了新的文献求助30
19秒前
20秒前
kai完成签到,获得积分10
21秒前
君临完成签到,获得积分10
23秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162753
求助须知:如何正确求助?哪些是违规求助? 2813664
关于积分的说明 7901471
捐赠科研通 2473244
什么是DOI,文献DOI怎么找? 1316693
科研通“疑难数据库(出版商)”最低求助积分说明 631482
版权声明 602175