On the Effect of k Values and Distance Metrics in KNN Algorithm for Android Malware Detection

Android(操作系统) 恶意软件 计算机科学 移动设备 支持向量机 机器学习 操作系统 嵌入式系统 算法 人工智能
作者
Durmuş Özkan Şahın,Sedat Akleylek,Erdal Kılıç
出处
期刊:Advances in data science and adaptive analysis [World Scientific]
卷期号:13 (03n04) 被引量:1
标识
DOI:10.1142/s2424922x21410011
摘要

There is a remarkable increase in mobile device usage in recent years. The Android operating system is by far the most preferred open-source mobile operating system around the world. Besides, the Android operating system is preferred in many devices on the Internet of Things (IoT) devices are used in many areas of daily life. Smart cities, smart environment, health, home automation, agriculture, and livestock are some of the usage areas. Health is one of the most frequently used areas. Since the Android operating system is both the widely used operating system and open-source, the vast majority of malware released on the market is now designed for Android platforms. Therefore, devices using the Android operating system are under serious threat. In this study, a system that detects malware on Android operating systems based on machine learning is proposed. Besides, feature vectors are created with permissions that have an important place in the security of the Android operating system. Feature vectors created using the k-nearest neighbor algorithm (KNN), one of the machine learning techniques, are given as input to this algorithm, and a classification of malicious software and benign software is provided. In the KNN algorithm, the k value and the distance metric used to find the closest sample directly affect the classification performance. In addition, the study examining the parameters of the KNN algorithm in detail in permission-based studies is limited. For this reason, the performance of the malware detection system is presented comparatively using five different k values and five different distance metrics under different data sets. When the results are examined, it is observed that higher classification performances are obtained when values such as 1, 3 are given to k and metrics such as Euclidean and Minkowski are chosen instead of the Chebyshev distance metric.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凶狠的期待完成签到,获得积分10
刚刚
2秒前
泥撑完成签到,获得积分10
2秒前
粗心的听安完成签到,获得积分10
3秒前
voifhpg完成签到,获得积分10
3秒前
深情安青应助LVMIN采纳,获得10
4秒前
元66666完成签到 ,获得积分10
4秒前
青柠完成签到,获得积分10
4秒前
Cloris完成签到,获得积分10
4秒前
个性太英完成签到,获得积分10
4秒前
ccccc完成签到,获得积分20
4秒前
骆展羽完成签到 ,获得积分10
4秒前
初心完成签到,获得积分10
5秒前
5秒前
凉薄少年应助现代的冰珍采纳,获得10
5秒前
6秒前
6秒前
困困发布了新的文献求助10
6秒前
司空天磊完成签到,获得积分10
6秒前
7秒前
7秒前
Hello应助白桃味的夏采纳,获得10
9秒前
9秒前
许愿非树完成签到,获得积分10
9秒前
Lsy完成签到,获得积分10
10秒前
温暖霸完成签到,获得积分10
10秒前
高挑的若雁完成签到 ,获得积分10
10秒前
liuz53完成签到,获得积分10
11秒前
个性太英发布了新的文献求助10
11秒前
zhc完成签到,获得积分10
11秒前
hkh发布了新的文献求助10
11秒前
苏苏不是我完成签到,获得积分10
11秒前
月半完成签到,获得积分10
11秒前
话家发布了新的文献求助10
12秒前
zygclwl发布了新的文献求助10
12秒前
香蕉觅云应助标致冬日采纳,获得10
12秒前
喜看财经发布了新的文献求助10
12秒前
kk完成签到 ,获得积分10
12秒前
啥也不会完成签到,获得积分10
12秒前
忧郁元柏完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950088
求助须知:如何正确求助?哪些是违规求助? 3495487
关于积分的说明 11077296
捐赠科研通 3226021
什么是DOI,文献DOI怎么找? 1783386
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800855