重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Application of deep learning neural network in predicting bone mineral density from plain X-ray radiography

骨质疏松症 医学 骨盆 双能X射线吸收法 放射科 骨矿物 射线照相术 股骨 骨密度 弗雷克斯 核医学 人工智能 外科 内科学 计算机科学 骨质疏松性骨折
作者
Chan-Shien Ho,Yueh-Peng Chen,Tzuo‐Yau Fan,Chang‐Fu Kuo,Tzu-Yun Yen,Yuan-Chang Liu,Yu‐Cheng Pei
出处
期刊:Archives of Osteoporosis [Springer Nature]
卷期号:16 (1) 被引量:28
标识
DOI:10.1007/s11657-021-00985-8
摘要

DeepDXA is a deep learning model designed to infer bone mineral density data from plain pelvis X-ray, and it can achieve good predicted value for clinical use. Osteoporosis is defined as a systemic disease of the bone characterized by a decrease in bone strength and deterioration of bone structure at the microscopic level, leading to bone fragility and increased risk of fracture. Bone mineral density (BMD) is the preferred method for the diagnosis of osteoporosis, and dual-energy x-ray absorptiometry (DXA) is the gold standard for diagnosing osteoporosis. Conventional radiography is more suited for the screening of osteoporosis rather than diagnosis, and osteoporosis can be detected on radiographs by experienced physicians only. This study explored the possibility of predicting BMD relative to DXA using patient radiographs. A deep learning algorithm of convolutional neural network (CNN) was used for the purpose. The method includes image segmentation, CNN learning, and a convolution-based regression model (DeepDXA) that links the isolated images of the femur bone to predict BMD value. Data were obtained in a single medical center from 2006 to 2018, with a total amount of 3472 pairs of pelvis X-ray and DXA examination within 1 year. The proposed workflow successfully predicted BMD values of the femur bone with the correlation coefficient (R) of 0.85 (P < 0.001) and the accuracy of 0.88 for prediction osteoporosis, a finding that could be reliably ready for further clinical use. When suspicious osteoporosis is seen on plain films using the deep learning method we developed, further referral to DXA for the definite diagnosis of osteoporosis is indicated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
芋圆应助zlintcm采纳,获得10
1秒前
深情安青应助壳聚糖采纳,获得10
1秒前
Eric发布了新的文献求助10
1秒前
wch666发布了新的文献求助10
2秒前
CodeCraft应助十七采纳,获得10
2秒前
范恒发布了新的文献求助10
2秒前
Jennifer完成签到,获得积分10
2秒前
燃烧的荷包蛋完成签到,获得积分10
2秒前
3秒前
ghjyufh发布了新的文献求助10
4秒前
heroli完成签到,获得积分10
4秒前
丘比特应助lili采纳,获得10
5秒前
李健应助lizike采纳,获得10
5秒前
duoduoqian完成签到,获得积分20
5秒前
5秒前
舒适清涟发布了新的文献求助10
6秒前
6秒前
SQ完成签到,获得积分10
6秒前
天天快乐应助cc采纳,获得30
6秒前
无花果应助崔哲瀚采纳,获得10
7秒前
浮游应助FLZLC采纳,获得10
7秒前
7秒前
7秒前
8秒前
111111完成签到,获得积分10
8秒前
坦率的匪发布了新的文献求助10
8秒前
心照完成签到,获得积分20
9秒前
大会哥完成签到,获得积分10
9秒前
yydssss完成签到,获得积分10
9秒前
czs发布了新的文献求助10
9秒前
迷人羊完成签到,获得积分10
9秒前
无私香彤完成签到 ,获得积分10
9秒前
阳光元正发布了新的文献求助30
9秒前
星辰大海应助Jennifer采纳,获得10
9秒前
FRANKIE完成签到 ,获得积分20
10秒前
妩媚的新波完成签到,获得积分10
10秒前
Sarah完成签到,获得积分10
10秒前
领导范儿应助ZQL采纳,获得10
10秒前
今后应助无情的鸣凤采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467266
求助须知:如何正确求助?哪些是违规求助? 4570917
关于积分的说明 14327656
捐赠科研通 4497524
什么是DOI,文献DOI怎么找? 2463982
邀请新用户注册赠送积分活动 1452857
关于科研通互助平台的介绍 1427654