Application of deep learning neural network in predicting bone mineral density from plain X-ray radiography

骨质疏松症 医学 骨盆 双能X射线吸收法 放射科 骨矿物 射线照相术 股骨 骨密度 弗雷克斯 核医学 人工智能 外科 内科学 计算机科学 骨质疏松性骨折
作者
Chan-Shien Ho,Yueh-Peng Chen,Tzuo‐Yau Fan,Chang‐Fu Kuo,Tzu-Yun Yen,Yuan-Chang Liu,Yu‐Cheng Pei
出处
期刊:Archives of Osteoporosis [Springer Science+Business Media]
卷期号:16 (1) 被引量:28
标识
DOI:10.1007/s11657-021-00985-8
摘要

DeepDXA is a deep learning model designed to infer bone mineral density data from plain pelvis X-ray, and it can achieve good predicted value for clinical use. Osteoporosis is defined as a systemic disease of the bone characterized by a decrease in bone strength and deterioration of bone structure at the microscopic level, leading to bone fragility and increased risk of fracture. Bone mineral density (BMD) is the preferred method for the diagnosis of osteoporosis, and dual-energy x-ray absorptiometry (DXA) is the gold standard for diagnosing osteoporosis. Conventional radiography is more suited for the screening of osteoporosis rather than diagnosis, and osteoporosis can be detected on radiographs by experienced physicians only. This study explored the possibility of predicting BMD relative to DXA using patient radiographs. A deep learning algorithm of convolutional neural network (CNN) was used for the purpose. The method includes image segmentation, CNN learning, and a convolution-based regression model (DeepDXA) that links the isolated images of the femur bone to predict BMD value. Data were obtained in a single medical center from 2006 to 2018, with a total amount of 3472 pairs of pelvis X-ray and DXA examination within 1 year. The proposed workflow successfully predicted BMD values of the femur bone with the correlation coefficient (R) of 0.85 (P < 0.001) and the accuracy of 0.88 for prediction osteoporosis, a finding that could be reliably ready for further clinical use. When suspicious osteoporosis is seen on plain films using the deep learning method we developed, further referral to DXA for the definite diagnosis of osteoporosis is indicated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
在水一方应助oleskarabach采纳,获得10
1秒前
3秒前
3秒前
cccf发布了新的文献求助10
4秒前
Zewen_Li应助研友_LJGOan采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
烤乳猪发布了新的文献求助10
6秒前
难过以晴发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
lmd250909完成签到,获得积分10
9秒前
9秒前
国家一级保护废物点心完成签到,获得积分10
10秒前
李健的粉丝团团长应助cccf采纳,获得100
11秒前
GUIGUI发布了新的文献求助10
11秒前
11秒前
忘尘发布了新的文献求助10
11秒前
Gnehsnuy完成签到 ,获得积分10
13秒前
13秒前
14秒前
14秒前
和谐项链发布了新的文献求助10
14秒前
紫熊发布了新的文献求助20
16秒前
土土完成签到,获得积分10
16秒前
优美芝发布了新的文献求助10
16秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
Xing发布了新的文献求助10
18秒前
oleskarabach发布了新的文献求助10
18秒前
香菜兔子完成签到,获得积分10
19秒前
GUIGUI完成签到,获得积分10
19秒前
科研通AI6应助renren采纳,获得10
19秒前
愉快又莲发布了新的文献求助10
21秒前
淡然紫寒发布了新的文献求助10
22秒前
123完成签到 ,获得积分10
23秒前
23秒前
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950785
求助须知:如何正确求助?哪些是违规求助? 4213480
关于积分的说明 13104665
捐赠科研通 3995409
什么是DOI,文献DOI怎么找? 2186899
邀请新用户注册赠送积分活动 1202125
关于科研通互助平台的介绍 1115408