Application of deep learning neural network in predicting bone mineral density from plain X-ray radiography

骨质疏松症 医学 骨盆 双能X射线吸收法 放射科 骨矿物 射线照相术 股骨 骨密度 弗雷克斯 核医学 人工智能 外科 内科学 计算机科学 骨质疏松性骨折
作者
Chan-Shien Ho,Yueh-Peng Chen,Tzuo‐Yau Fan,Chang‐Fu Kuo,Tzu-Yun Yen,Yuan-Chang Liu,Yu‐Cheng Pei
出处
期刊:Archives of Osteoporosis [Springer Nature]
卷期号:16 (1) 被引量:22
标识
DOI:10.1007/s11657-021-00985-8
摘要

DeepDXA is a deep learning model designed to infer bone mineral density data from plain pelvis X-ray, and it can achieve good predicted value for clinical use. Osteoporosis is defined as a systemic disease of the bone characterized by a decrease in bone strength and deterioration of bone structure at the microscopic level, leading to bone fragility and increased risk of fracture. Bone mineral density (BMD) is the preferred method for the diagnosis of osteoporosis, and dual-energy x-ray absorptiometry (DXA) is the gold standard for diagnosing osteoporosis. Conventional radiography is more suited for the screening of osteoporosis rather than diagnosis, and osteoporosis can be detected on radiographs by experienced physicians only. This study explored the possibility of predicting BMD relative to DXA using patient radiographs. A deep learning algorithm of convolutional neural network (CNN) was used for the purpose. The method includes image segmentation, CNN learning, and a convolution-based regression model (DeepDXA) that links the isolated images of the femur bone to predict BMD value. Data were obtained in a single medical center from 2006 to 2018, with a total amount of 3472 pairs of pelvis X-ray and DXA examination within 1 year. The proposed workflow successfully predicted BMD values of the femur bone with the correlation coefficient (R) of 0.85 (P < 0.001) and the accuracy of 0.88 for prediction osteoporosis, a finding that could be reliably ready for further clinical use. When suspicious osteoporosis is seen on plain films using the deep learning method we developed, further referral to DXA for the definite diagnosis of osteoporosis is indicated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦完成签到 ,获得积分10
刚刚
1秒前
ewk关闭了ewk文献求助
1秒前
2秒前
大模型应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
大师应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
2秒前
4秒前
万能图书馆应助宁静致远采纳,获得10
4秒前
5秒前
1111发布了新的文献求助10
7秒前
深情安青应助奋斗的萝采纳,获得10
7秒前
hhhhh完成签到,获得积分10
7秒前
LJJ发布了新的文献求助10
8秒前
9秒前
激动的冷松关注了科研通微信公众号
9秒前
zly1053发布了新的文献求助10
9秒前
10秒前
liulongchao发布了新的文献求助10
10秒前
彩色的夏青关注了科研通微信公众号
11秒前
ncuhxm完成签到,获得积分10
12秒前
12秒前
研友_VZG7GZ应助霸气夏旋采纳,获得10
12秒前
13秒前
14秒前
14秒前
dlfg完成签到,获得积分10
14秒前
bu应助淡淡猕猴桃采纳,获得10
15秒前
李爱国应助1111采纳,获得10
16秒前
16秒前
英姑应助hanyang965采纳,获得10
16秒前
迅速冰颜完成签到,获得积分10
17秒前
zmxpkq发布了新的文献求助10
17秒前
汉堡包应助CC采纳,获得10
17秒前
尽平梅愿发布了新的文献求助10
18秒前
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310243
求助须知:如何正确求助?哪些是违规求助? 2943212
关于积分的说明 8513174
捐赠科研通 2618448
什么是DOI,文献DOI怎么找? 1431076
科研通“疑难数据库(出版商)”最低求助积分说明 664359
邀请新用户注册赠送积分活动 649542