Application of deep learning neural network in predicting bone mineral density from plain X-ray radiography

骨质疏松症 医学 骨盆 双能X射线吸收法 放射科 骨矿物 射线照相术 股骨 骨密度 弗雷克斯 核医学 人工智能 外科 内科学 计算机科学 骨质疏松性骨折
作者
Chan-Shien Ho,Yueh-Peng Chen,Tzuo‐Yau Fan,Chang‐Fu Kuo,Tzu-Yun Yen,Yuan-Chang Liu,Yu‐Cheng Pei
出处
期刊:Archives of Osteoporosis [Springer Nature]
卷期号:16 (1) 被引量:28
标识
DOI:10.1007/s11657-021-00985-8
摘要

DeepDXA is a deep learning model designed to infer bone mineral density data from plain pelvis X-ray, and it can achieve good predicted value for clinical use. Osteoporosis is defined as a systemic disease of the bone characterized by a decrease in bone strength and deterioration of bone structure at the microscopic level, leading to bone fragility and increased risk of fracture. Bone mineral density (BMD) is the preferred method for the diagnosis of osteoporosis, and dual-energy x-ray absorptiometry (DXA) is the gold standard for diagnosing osteoporosis. Conventional radiography is more suited for the screening of osteoporosis rather than diagnosis, and osteoporosis can be detected on radiographs by experienced physicians only. This study explored the possibility of predicting BMD relative to DXA using patient radiographs. A deep learning algorithm of convolutional neural network (CNN) was used for the purpose. The method includes image segmentation, CNN learning, and a convolution-based regression model (DeepDXA) that links the isolated images of the femur bone to predict BMD value. Data were obtained in a single medical center from 2006 to 2018, with a total amount of 3472 pairs of pelvis X-ray and DXA examination within 1 year. The proposed workflow successfully predicted BMD values of the femur bone with the correlation coefficient (R) of 0.85 (P < 0.001) and the accuracy of 0.88 for prediction osteoporosis, a finding that could be reliably ready for further clinical use. When suspicious osteoporosis is seen on plain films using the deep learning method we developed, further referral to DXA for the definite diagnosis of osteoporosis is indicated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tiantiantian完成签到,获得积分10
刚刚
好学发布了新的文献求助10
刚刚
dayu大雨发布了新的文献求助10
刚刚
1秒前
隐形曼青应助和谐的行恶采纳,获得10
1秒前
2秒前
2秒前
2秒前
烟花应助憨憨采纳,获得10
2秒前
xxfsx应助李思雨采纳,获得10
2秒前
3秒前
Lucky完成签到,获得积分10
3秒前
gln完成签到 ,获得积分10
5秒前
5秒前
小D发布了新的文献求助10
6秒前
7秒前
Hunter发布了新的文献求助10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
梁婧茵发布了新的文献求助10
9秒前
悲凉的孤萍完成签到 ,获得积分10
9秒前
Akim应助小璐采纳,获得10
10秒前
何hao完成签到,获得积分10
10秒前
番茄鱼完成签到 ,获得积分10
12秒前
桐桐应助科研通管家采纳,获得10
13秒前
kentonchow应助科研通管家采纳,获得30
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
专注白昼应助科研通管家采纳,获得20
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
小马甲应助科研通管家采纳,获得10
13秒前
ding应助科研通管家采纳,获得30
13秒前
kentonchow应助科研通管家采纳,获得30
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
14秒前
14秒前
kentonchow应助科研通管家采纳,获得30
14秒前
浮游应助科研通管家采纳,获得10
14秒前
慕青应助科研通管家采纳,获得10
14秒前
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424308
求助须知:如何正确求助?哪些是违规求助? 4538684
关于积分的说明 14163217
捐赠科研通 4455559
什么是DOI,文献DOI怎么找? 2443800
邀请新用户注册赠送积分活动 1434944
关于科研通互助平台的介绍 1412304