Application of deep learning neural network in predicting bone mineral density from plain X-ray radiography

骨质疏松症 医学 骨盆 双能X射线吸收法 放射科 骨矿物 射线照相术 股骨 骨密度 弗雷克斯 核医学 人工智能 外科 内科学 计算机科学 骨质疏松性骨折
作者
Chan-Shien Ho,Yueh-Peng Chen,Tzuo‐Yau Fan,Chang‐Fu Kuo,Tzu-Yun Yen,Yuan-Chang Liu,Yu‐Cheng Pei
出处
期刊:Archives of Osteoporosis [Springer Science+Business Media]
卷期号:16 (1) 被引量:28
标识
DOI:10.1007/s11657-021-00985-8
摘要

DeepDXA is a deep learning model designed to infer bone mineral density data from plain pelvis X-ray, and it can achieve good predicted value for clinical use. Osteoporosis is defined as a systemic disease of the bone characterized by a decrease in bone strength and deterioration of bone structure at the microscopic level, leading to bone fragility and increased risk of fracture. Bone mineral density (BMD) is the preferred method for the diagnosis of osteoporosis, and dual-energy x-ray absorptiometry (DXA) is the gold standard for diagnosing osteoporosis. Conventional radiography is more suited for the screening of osteoporosis rather than diagnosis, and osteoporosis can be detected on radiographs by experienced physicians only. This study explored the possibility of predicting BMD relative to DXA using patient radiographs. A deep learning algorithm of convolutional neural network (CNN) was used for the purpose. The method includes image segmentation, CNN learning, and a convolution-based regression model (DeepDXA) that links the isolated images of the femur bone to predict BMD value. Data were obtained in a single medical center from 2006 to 2018, with a total amount of 3472 pairs of pelvis X-ray and DXA examination within 1 year. The proposed workflow successfully predicted BMD values of the femur bone with the correlation coefficient (R) of 0.85 (P < 0.001) and the accuracy of 0.88 for prediction osteoporosis, a finding that could be reliably ready for further clinical use. When suspicious osteoporosis is seen on plain films using the deep learning method we developed, further referral to DXA for the definite diagnosis of osteoporosis is indicated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘻嘻发布了新的文献求助10
1秒前
脑洞疼应助unique444采纳,获得10
1秒前
新星发布了新的文献求助10
2秒前
铭心完成签到,获得积分10
4秒前
4秒前
5秒前
becl完成签到,获得积分10
5秒前
6秒前
小兰花完成签到,获得积分10
6秒前
脑洞疼应助kk采纳,获得20
6秒前
8秒前
yznfly应助sbw采纳,获得20
9秒前
9秒前
10秒前
xusuizi发布了新的文献求助10
10秒前
10秒前
11秒前
无花果应助谦让烤鸡采纳,获得10
12秒前
Viola发布了新的文献求助10
13秒前
13秒前
14秒前
研友_5Zl9D8发布了新的文献求助10
15秒前
unique444发布了新的文献求助10
15秒前
牛奶糖完成签到 ,获得积分10
16秒前
May发布了新的文献求助10
17秒前
大个应助乘风破浪采纳,获得10
19秒前
辉辉028发布了新的文献求助10
20秒前
强壮的美女完成签到 ,获得积分10
21秒前
平头哥哥完成签到 ,获得积分10
21秒前
zsk1122完成签到,获得积分10
22秒前
李kylin发布了新的文献求助10
22秒前
22秒前
22秒前
wsq155关注了科研通微信公众号
22秒前
23秒前
23秒前
23秒前
25秒前
小马同学发布了新的文献求助10
26秒前
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966114
求助须知:如何正确求助?哪些是违规求助? 3511490
关于积分的说明 11158539
捐赠科研通 3246107
什么是DOI,文献DOI怎么找? 1793292
邀请新用户注册赠送积分活动 874284
科研通“疑难数据库(出版商)”最低求助积分说明 804324