Improving Pneumonia Localization via Cross-Attention on Medical Images and Reports

计算机科学 人工智能 管道(软件) 肺炎 深度学习 领域(数学分析) 机器学习 医学 数学 内科学 数学分析 程序设计语言
作者
Riddhish Bhalodia,Ali Hatamizadeh,Leo Tam,Ziyue Xu,Xiaosong Wang,Evrim Türkbey,Daguang Xu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 571-581 被引量:11
标识
DOI:10.1007/978-3-030-87196-3_53
摘要

Localization and characterization of diseases like pneumonia are primary steps in a clinical pipeline, facilitating detailed clinical diagnosis and subsequent treatment planning. Additionally, such location annotated datasets can provide a pathway for deep learning models to be used for downstream tasks. However, acquiring quality annotations is expensive on human resources and usually requires domain expertise. On the other hand, medical reports contain a plethora of information both about pnuemonia characteristics and its location. In this paper, we propose a novel weakly-supervised attention-driven deep learning model that leverages encoded information in medical reports during training to facilitate better localization. Our model also performs classification of attributes that are associated to pneumonia and extracted from medical reports for supervision. Both the classification and localization are trained in conjunction and once trained, the model can be utilized for both the localization and characterization of pneumonia using only the input image. In this paper, we explore and analyze the model using chest X-ray datasets and demonstrate qualitatively and quantitatively that the introduction of textual information improves pneumonia localization. We showcase quantitative results on two datasets, MIMIC-CXR and Chest X-ray-8, and we also showcase severity characterization on COVID-19 dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zhu XY.发布了新的文献求助10
刚刚
科研通AI2S应助felix采纳,获得10
1秒前
无私尔云应助felix采纳,获得10
1秒前
无私尔云应助felix采纳,获得10
1秒前
FashionBoy应助felix采纳,获得10
1秒前
桐桐应助gszy1975采纳,获得10
1秒前
曾经的慕灵完成签到,获得积分10
1秒前
2秒前
3秒前
顾矜应助QQ不需要昵称采纳,获得10
3秒前
4秒前
科研乐色完成签到,获得积分10
5秒前
guo完成签到,获得积分10
5秒前
研友_ZGR0jn完成签到,获得积分10
5秒前
sweat完成签到,获得积分20
5秒前
科研小白完成签到,获得积分10
6秒前
活泼人生完成签到 ,获得积分10
6秒前
阿曼尼完成签到 ,获得积分10
7秒前
xiaoziyi666完成签到,获得积分10
7秒前
pearl完成签到,获得积分10
8秒前
燕子发布了新的文献求助10
8秒前
呆呆小猪完成签到,获得积分10
8秒前
我是老大应助sweat采纳,获得10
9秒前
dudu完成签到,获得积分10
9秒前
调皮芷卉完成签到,获得积分10
10秒前
小李儿完成签到,获得积分20
10秒前
NexusExplorer应助积极的无极采纳,获得10
11秒前
11秒前
11秒前
yang完成签到,获得积分10
12秒前
12秒前
夏天就应该爬树完成签到,获得积分10
12秒前
13秒前
13秒前
dd完成签到,获得积分10
13秒前
枝桠完成签到,获得积分10
14秒前
TPolymer完成签到,获得积分10
14秒前
14秒前
15秒前
打打应助zx采纳,获得10
15秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158884
求助须知:如何正确求助?哪些是违规求助? 2810072
关于积分的说明 7885775
捐赠科研通 2468916
什么是DOI,文献DOI怎么找? 1314424
科研通“疑难数据库(出版商)”最低求助积分说明 630616
版权声明 602012