Influence of the fiber orientation on 3D C/C–SiC composite material and its formation mechanism of the machining surface

材料科学 复合材料 残余应力 脆性 机械加工 研磨 纤维 可加工性 复合数 表面完整性 表面粗糙度 冶金
作者
Wei Li,Gui Long,Feng Shi,Shenlei Zhou,Juan Yin,Jianxiao Yang
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Nature]
卷期号:118 (7-8): 2725-2743 被引量:15
标识
DOI:10.1007/s00170-021-08149-1
摘要

Carbon/Carbon (C/C)–SiC composite materials attained much attention due to its unique properties like immense thermal conductivity, high corrosion, and abrasive resistance. Few scholars have systematically studied the grinding machinability of 3D C/C–SiC composite material. In this paper, the grinding experiment of 3D C/C–SiC composite material was carried out with a resin-bonded diamond grinding wheel. The effect of machining conditions on the grinding force, micromorphology, surface quality, and residual stress was studied, and the material removal mechanism was analyzed in-depth aimed at the three typical fiber orientations. The result shows that the surface roughness of different fiber areas follows the order: 90° fiber > 0° fiber > Normal fiber. The fiber’s orientation showed a significant effect on the mechanism of material removal. The residual thermal stress of C/C–SiC composite material increases from 32.25 to 207.43 MPa during the grinding process. Polishing the ground surface not only can remove the crack layer and residual stress layer but also can introduce residual compressive stress layer, which can effectively enhance the material strength. The 3D C/C–SiC composite material removal process is distinct from the composite material 2D C/C–SiC and the traditional brittle material. The main removal of C/C–SiC composite material is recognized as brittle fracture mode. Because of the different mechanical properties of carbon fiber, SiC matrix, and the pyrocarbon interface, the damage of material during grinding is asynchronous. The present work provides a comprehensive understanding for processing 3D C/C–SiC composite material parts with high quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老实觅松完成签到,获得积分10
1秒前
王世俊发布了新的文献求助10
1秒前
kma完成签到,获得积分10
1秒前
Dr.Liu发布了新的文献求助10
1秒前
1秒前
Petrichor完成签到,获得积分10
2秒前
北蓝完成签到,获得积分10
3秒前
搜集达人应助成天睡大觉采纳,获得10
3秒前
一碗晚月完成签到,获得积分10
4秒前
拔丝兔子发布了新的文献求助10
6秒前
武器奇关注了科研通微信公众号
6秒前
6秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
Levent完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
科目三应助11111采纳,获得10
10秒前
10秒前
子清发布了新的文献求助10
10秒前
10秒前
xxfsx应助疯狂的麦咭采纳,获得10
10秒前
无情心情完成签到,获得积分10
11秒前
chen发布了新的文献求助10
11秒前
丘比特应助徐不火采纳,获得10
11秒前
饱满的花生关注了科研通微信公众号
12秒前
蓝桉完成签到 ,获得积分10
13秒前
aa发布了新的文献求助10
13秒前
14秒前
14秒前
称心映寒发布了新的文献求助10
14秒前
15秒前
愤怒的笙发布了新的文献求助10
15秒前
15秒前
狂野的安彤完成签到,获得积分10
15秒前
学术小菜鸟完成签到 ,获得积分10
15秒前
华仔应助aa采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424481
求助须知:如何正确求助?哪些是违规求助? 4538810
关于积分的说明 14163993
捐赠科研通 4455806
什么是DOI,文献DOI怎么找? 2443899
邀请新用户注册赠送积分活动 1435026
关于科研通互助平台的介绍 1412337