亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning Predicts Heart Failure With Preserved, Mid-Range, and Reduced Left Ventricular Ejection Fraction From Patient Clinical Profiles

射血分数 医学 内科学 心脏病学 心力衰竭 冠状动脉疾病 射血分数保留的心力衰竭 人工智能 机器学习 计算机科学
作者
Mohanad Alkhodari,Herbert F. Jelinek,Angelos Karlas,Στέργιος Σουλαϊδόπουλος,Πέτρος Αρσένος,Ioannis Doundoulakis,Konstantinos Gatzoulis,Konstantinos Tsioufis,Leontios J. Hadjileontiadis,Ahsan H. Khandoker
出处
期刊:Frontiers in Cardiovascular Medicine [Frontiers Media SA]
卷期号:8 被引量:16
标识
DOI:10.3389/fcvm.2021.755968
摘要

Background: Left ventricular ejection fraction (LVEF) is the gold standard for evaluating heart failure (HF) in coronary artery disease (CAD) patients. It is an essential metric in categorizing HF patients as preserved (HFpEF), mid-range (HFmEF), and reduced (HFrEF) ejection fraction but differs, depending on whether the ASE/EACVI or ESC guidelines are used to classify HF. Objectives: We sought to investigate the effectiveness of using deep learning as an automated tool to predict LVEF from patient clinical profiles using regression and classification trained models. We further investigate the effect of utilizing other LVEF-based thresholds to examine the discrimination ability of deep learning between HF categories grouped with narrower ranges. Methods: Data from 303 CAD patients were obtained from American and Greek patient databases and categorized based on the American Society of Echocardiography and the European Association of Cardiovascular Imaging (ASE/EACVI) guidelines into HFpEF (EF > 55%), HFmEF (50% ≤ EF ≤ 55%), and HFrEF (EF < 50%). Clinical profiles included 13 demographical and clinical markers grouped as cardiovascular risk factors, medication, and history. The most significant and important markers were determined using linear regression fitting and Chi-squared test combined with a novel dimensionality reduction algorithm based on arc radial visualization (ArcViz). Two deep learning-based models were then developed and trained using convolutional neural networks (CNN) to estimate LVEF levels from the clinical information and for classification into one of three LVEF-based HF categories. Results: A total of seven clinical markers were found important for discriminating between the three HF categories. Using statistical analysis, diabetes, diuretics medication, and prior myocardial infarction were found statistically significant (p < 0.001). Furthermore, age, body mass index (BMI), anti-arrhythmics medication, and previous ventricular tachycardia were found important after projections on the ArcViz convex hull with an average nearest centroid (NC) accuracy of 94%. The regression model estimated LVEF levels successfully with an overall accuracy of 90%, average root mean square error (RMSE) of 4.13, and correlation coefficient of 0.85. A significant improvement was then obtained with the classification model, which predicted HF categories with an accuracy ≥93%, sensitivity ≥89%, 1-specificity <5%, and average area under the receiver operating characteristics curve (AUROC) of 0.98. Conclusions: Our study suggests the potential of implementing deep learning-based models clinically to ensure faster, yet accurate, automatic prediction of HF based on the ASE/EACVI LVEF guidelines with only clinical profiles and corresponding information as input to the models. Invasive, expensive, and time-consuming clinical testing could thus be avoided, enabling reduced stress in patients and simpler triage for further intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天才小熊猫完成签到,获得积分10
6秒前
jiangchuansm发布了新的文献求助20
14秒前
19秒前
科研小刘发布了新的文献求助10
24秒前
linuo完成签到,获得积分10
26秒前
orixero应助Aira采纳,获得10
29秒前
41秒前
xiekunwhy完成签到,获得积分10
57秒前
夜阑听雨完成签到,获得积分0
1分钟前
容若发布了新的文献求助10
1分钟前
远方发布了新的文献求助10
1分钟前
2分钟前
科研小刘发布了新的文献求助10
2分钟前
lingduyu发布了新的文献求助10
2分钟前
2分钟前
2分钟前
激动的似狮完成签到,获得积分10
2分钟前
2分钟前
2分钟前
Ying完成签到,获得积分10
2分钟前
lingduyu完成签到,获得积分10
2分钟前
健忘沛春完成签到 ,获得积分10
3分钟前
Singularity应助Milesma采纳,获得10
4分钟前
4分钟前
wanci应助科研通管家采纳,获得10
4分钟前
Aira发布了新的文献求助10
4分钟前
4分钟前
李健应助Aira采纳,获得10
4分钟前
4分钟前
serein发布了新的文献求助10
4分钟前
4分钟前
健忘沛春发布了新的文献求助10
4分钟前
xz完成签到 ,获得积分10
5分钟前
youngyang完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
刘快乐发布了新的文献求助10
5分钟前
6分钟前
江子川发布了新的文献求助10
6分钟前
6分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142675
求助须知:如何正确求助?哪些是违规求助? 2793563
关于积分的说明 7806945
捐赠科研通 2449831
什么是DOI,文献DOI怎么找? 1303501
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601314