亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning Predicts Heart Failure With Preserved, Mid-Range, and Reduced Left Ventricular Ejection Fraction From Patient Clinical Profiles

射血分数 医学 内科学 心脏病学 心力衰竭 冠状动脉疾病 射血分数保留的心力衰竭 人工智能 机器学习 计算机科学
作者
Mohanad Alkhodari,Herbert F. Jelinek,Angelos Karlas,Στέργιος Σουλαϊδόπουλος,Πέτρος Αρσένος,Ioannis Doundoulakis,Konstantinos Gatzoulis,Konstantinos Tsioufis,Leontios J. Hadjileontiadis,Ahsan H. Khandoker
出处
期刊:Frontiers in Cardiovascular Medicine [Frontiers Media SA]
卷期号:8 被引量:16
标识
DOI:10.3389/fcvm.2021.755968
摘要

Background: Left ventricular ejection fraction (LVEF) is the gold standard for evaluating heart failure (HF) in coronary artery disease (CAD) patients. It is an essential metric in categorizing HF patients as preserved (HFpEF), mid-range (HFmEF), and reduced (HFrEF) ejection fraction but differs, depending on whether the ASE/EACVI or ESC guidelines are used to classify HF. Objectives: We sought to investigate the effectiveness of using deep learning as an automated tool to predict LVEF from patient clinical profiles using regression and classification trained models. We further investigate the effect of utilizing other LVEF-based thresholds to examine the discrimination ability of deep learning between HF categories grouped with narrower ranges. Methods: Data from 303 CAD patients were obtained from American and Greek patient databases and categorized based on the American Society of Echocardiography and the European Association of Cardiovascular Imaging (ASE/EACVI) guidelines into HFpEF (EF > 55%), HFmEF (50% ≤ EF ≤ 55%), and HFrEF (EF < 50%). Clinical profiles included 13 demographical and clinical markers grouped as cardiovascular risk factors, medication, and history. The most significant and important markers were determined using linear regression fitting and Chi-squared test combined with a novel dimensionality reduction algorithm based on arc radial visualization (ArcViz). Two deep learning-based models were then developed and trained using convolutional neural networks (CNN) to estimate LVEF levels from the clinical information and for classification into one of three LVEF-based HF categories. Results: A total of seven clinical markers were found important for discriminating between the three HF categories. Using statistical analysis, diabetes, diuretics medication, and prior myocardial infarction were found statistically significant (p < 0.001). Furthermore, age, body mass index (BMI), anti-arrhythmics medication, and previous ventricular tachycardia were found important after projections on the ArcViz convex hull with an average nearest centroid (NC) accuracy of 94%. The regression model estimated LVEF levels successfully with an overall accuracy of 90%, average root mean square error (RMSE) of 4.13, and correlation coefficient of 0.85. A significant improvement was then obtained with the classification model, which predicted HF categories with an accuracy ≥93%, sensitivity ≥89%, 1-specificity <5%, and average area under the receiver operating characteristics curve (AUROC) of 0.98. Conclusions: Our study suggests the potential of implementing deep learning-based models clinically to ensure faster, yet accurate, automatic prediction of HF based on the ASE/EACVI LVEF guidelines with only clinical profiles and corresponding information as input to the models. Invasive, expensive, and time-consuming clinical testing could thus be avoided, enabling reduced stress in patients and simpler triage for further intervention.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
anyilin发布了新的文献求助10
1秒前
2秒前
科研通AI2S应助研友_ngX12Z采纳,获得10
3秒前
科研通AI6应助光轮2000采纳,获得10
4秒前
xiuxiu完成签到 ,获得积分10
8秒前
old杜完成签到,获得积分10
9秒前
不闻不问完成签到,获得积分10
12秒前
我爱Chem完成签到 ,获得积分10
12秒前
anyilin完成签到,获得积分10
14秒前
15秒前
19秒前
慕青应助山鬼采纳,获得10
20秒前
ZXK完成签到 ,获得积分10
21秒前
ZLl完成签到 ,获得积分10
23秒前
27秒前
duan完成签到 ,获得积分10
29秒前
英姑应助缓慢枕头采纳,获得10
30秒前
海贵完成签到,获得积分10
31秒前
33秒前
汉堡包应助光轮2000采纳,获得10
34秒前
35秒前
CodeCraft应助油柑美式采纳,获得10
40秒前
ZhangMingHe完成签到,获得积分10
42秒前
Xuanye完成签到,获得积分10
42秒前
44秒前
chenziyuan完成签到 ,获得积分20
48秒前
49秒前
50秒前
53秒前
光轮2000发布了新的文献求助10
54秒前
土豪的念云完成签到,获得积分10
54秒前
Xuanye发布了新的文献求助10
54秒前
lunar完成签到 ,获得积分10
56秒前
缓慢枕头发布了新的文献求助10
1分钟前
1分钟前
SciGPT应助油柑美式采纳,获得10
1分钟前
1分钟前
1分钟前
山鬼发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498101
求助须知:如何正确求助?哪些是违规求助? 4595469
关于积分的说明 14449140
捐赠科研通 4528169
什么是DOI,文献DOI怎么找? 2481381
邀请新用户注册赠送积分活动 1465549
关于科研通互助平台的介绍 1438283