亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning Predicts Heart Failure With Preserved, Mid-Range, and Reduced Left Ventricular Ejection Fraction From Patient Clinical Profiles

射血分数 医学 内科学 心脏病学 心力衰竭 冠状动脉疾病 射血分数保留的心力衰竭 人工智能 机器学习 计算机科学
作者
Mohanad Alkhodari,Herbert F. Jelinek,Angelos Karlas,Στέργιος Σουλαϊδόπουλος,Πέτρος Αρσένος,Ioannis Doundoulakis,Konstantinos Gatzoulis,Konstantinos Tsioufis,Leontios J. Hadjileontiadis,Ahsan H. Khandoker
出处
期刊:Frontiers in Cardiovascular Medicine [Frontiers Media SA]
卷期号:8 被引量:16
标识
DOI:10.3389/fcvm.2021.755968
摘要

Background: Left ventricular ejection fraction (LVEF) is the gold standard for evaluating heart failure (HF) in coronary artery disease (CAD) patients. It is an essential metric in categorizing HF patients as preserved (HFpEF), mid-range (HFmEF), and reduced (HFrEF) ejection fraction but differs, depending on whether the ASE/EACVI or ESC guidelines are used to classify HF. Objectives: We sought to investigate the effectiveness of using deep learning as an automated tool to predict LVEF from patient clinical profiles using regression and classification trained models. We further investigate the effect of utilizing other LVEF-based thresholds to examine the discrimination ability of deep learning between HF categories grouped with narrower ranges. Methods: Data from 303 CAD patients were obtained from American and Greek patient databases and categorized based on the American Society of Echocardiography and the European Association of Cardiovascular Imaging (ASE/EACVI) guidelines into HFpEF (EF > 55%), HFmEF (50% ≤ EF ≤ 55%), and HFrEF (EF < 50%). Clinical profiles included 13 demographical and clinical markers grouped as cardiovascular risk factors, medication, and history. The most significant and important markers were determined using linear regression fitting and Chi-squared test combined with a novel dimensionality reduction algorithm based on arc radial visualization (ArcViz). Two deep learning-based models were then developed and trained using convolutional neural networks (CNN) to estimate LVEF levels from the clinical information and for classification into one of three LVEF-based HF categories. Results: A total of seven clinical markers were found important for discriminating between the three HF categories. Using statistical analysis, diabetes, diuretics medication, and prior myocardial infarction were found statistically significant (p < 0.001). Furthermore, age, body mass index (BMI), anti-arrhythmics medication, and previous ventricular tachycardia were found important after projections on the ArcViz convex hull with an average nearest centroid (NC) accuracy of 94%. The regression model estimated LVEF levels successfully with an overall accuracy of 90%, average root mean square error (RMSE) of 4.13, and correlation coefficient of 0.85. A significant improvement was then obtained with the classification model, which predicted HF categories with an accuracy ≥93%, sensitivity ≥89%, 1-specificity <5%, and average area under the receiver operating characteristics curve (AUROC) of 0.98. Conclusions: Our study suggests the potential of implementing deep learning-based models clinically to ensure faster, yet accurate, automatic prediction of HF based on the ASE/EACVI LVEF guidelines with only clinical profiles and corresponding information as input to the models. Invasive, expensive, and time-consuming clinical testing could thus be avoided, enabling reduced stress in patients and simpler triage for further intervention.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shhoing应助科研通管家采纳,获得10
14秒前
hhr完成签到 ,获得积分10
34秒前
42秒前
wish完成签到 ,获得积分10
58秒前
江沅完成签到 ,获得积分10
1分钟前
1分钟前
xmsyq完成签到 ,获得积分10
1分钟前
1分钟前
像个间谍完成签到 ,获得积分10
1分钟前
1分钟前
神奇五子棋完成签到 ,获得积分10
1分钟前
renjijiefuli应助leesc94采纳,获得30
2分钟前
猫猫完成签到 ,获得积分10
2分钟前
orixero应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
小鱼应助科研通管家采纳,获得10
2分钟前
2分钟前
啊哦完成签到 ,获得积分10
2分钟前
Yy完成签到 ,获得积分10
2分钟前
2分钟前
姆姆没买完成签到 ,获得积分10
2分钟前
3分钟前
盛事不朽完成签到 ,获得积分10
3分钟前
li完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
科研通AI6应助否定之否定采纳,获得10
3分钟前
jwj完成签到,获得积分10
3分钟前
小珂完成签到 ,获得积分10
4分钟前
丰富的澜完成签到 ,获得积分10
4分钟前
MchemG应助科研通管家采纳,获得30
4分钟前
jiang完成签到 ,获得积分10
4分钟前
吞吞完成签到 ,获得积分10
4分钟前
4分钟前
大帅哥完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
CodeCraft应助科研通管家采纳,获得10
6分钟前
shhoing应助科研通管家采纳,获得10
6分钟前
MchemG应助科研通管家采纳,获得30
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558517
求助须知:如何正确求助?哪些是违规求助? 4643605
关于积分的说明 14671250
捐赠科研通 4584908
什么是DOI,文献DOI怎么找? 2515238
邀请新用户注册赠送积分活动 1489315
关于科研通互助平台的介绍 1459911