已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning Predicts Heart Failure With Preserved, Mid-Range, and Reduced Left Ventricular Ejection Fraction From Patient Clinical Profiles

射血分数 医学 内科学 心脏病学 心力衰竭 冠状动脉疾病 射血分数保留的心力衰竭 人工智能 机器学习 计算机科学
作者
Mohanad Alkhodari,Herbert F. Jelinek,Angelos Karlas,Στέργιος Σουλαϊδόπουλος,Πέτρος Αρσένος,Ioannis Doundoulakis,Konstantinos Gatzoulis,Konstantinos Tsioufis,Leontios J. Hadjileontiadis,Ahsan H. Khandoker
出处
期刊:Frontiers in Cardiovascular Medicine [Frontiers Media]
卷期号:8 被引量:16
标识
DOI:10.3389/fcvm.2021.755968
摘要

Background: Left ventricular ejection fraction (LVEF) is the gold standard for evaluating heart failure (HF) in coronary artery disease (CAD) patients. It is an essential metric in categorizing HF patients as preserved (HFpEF), mid-range (HFmEF), and reduced (HFrEF) ejection fraction but differs, depending on whether the ASE/EACVI or ESC guidelines are used to classify HF. Objectives: We sought to investigate the effectiveness of using deep learning as an automated tool to predict LVEF from patient clinical profiles using regression and classification trained models. We further investigate the effect of utilizing other LVEF-based thresholds to examine the discrimination ability of deep learning between HF categories grouped with narrower ranges. Methods: Data from 303 CAD patients were obtained from American and Greek patient databases and categorized based on the American Society of Echocardiography and the European Association of Cardiovascular Imaging (ASE/EACVI) guidelines into HFpEF (EF > 55%), HFmEF (50% ≤ EF ≤ 55%), and HFrEF (EF < 50%). Clinical profiles included 13 demographical and clinical markers grouped as cardiovascular risk factors, medication, and history. The most significant and important markers were determined using linear regression fitting and Chi-squared test combined with a novel dimensionality reduction algorithm based on arc radial visualization (ArcViz). Two deep learning-based models were then developed and trained using convolutional neural networks (CNN) to estimate LVEF levels from the clinical information and for classification into one of three LVEF-based HF categories. Results: A total of seven clinical markers were found important for discriminating between the three HF categories. Using statistical analysis, diabetes, diuretics medication, and prior myocardial infarction were found statistically significant (p < 0.001). Furthermore, age, body mass index (BMI), anti-arrhythmics medication, and previous ventricular tachycardia were found important after projections on the ArcViz convex hull with an average nearest centroid (NC) accuracy of 94%. The regression model estimated LVEF levels successfully with an overall accuracy of 90%, average root mean square error (RMSE) of 4.13, and correlation coefficient of 0.85. A significant improvement was then obtained with the classification model, which predicted HF categories with an accuracy ≥93%, sensitivity ≥89%, 1-specificity <5%, and average area under the receiver operating characteristics curve (AUROC) of 0.98. Conclusions: Our study suggests the potential of implementing deep learning-based models clinically to ensure faster, yet accurate, automatic prediction of HF based on the ASE/EACVI LVEF guidelines with only clinical profiles and corresponding information as input to the models. Invasive, expensive, and time-consuming clinical testing could thus be avoided, enabling reduced stress in patients and simpler triage for further intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
ceicic发布了新的文献求助10
1秒前
3秒前
伊叶之丘完成签到 ,获得积分10
3秒前
AAA建材批发原哥完成签到,获得积分10
3秒前
ssynkl发布了新的文献求助10
4秒前
4秒前
樱铃完成签到,获得积分10
4秒前
4秒前
jojo发布了新的文献求助10
4秒前
满意的向卉完成签到,获得积分10
6秒前
6秒前
ceicic完成签到,获得积分20
7秒前
Camellia发布了新的文献求助10
7秒前
jjdbqml发布了新的文献求助10
8秒前
ryanfeng完成签到,获得积分0
9秒前
LUMOS完成签到,获得积分10
9秒前
chromium22发布了新的文献求助10
10秒前
畅快沛白完成签到,获得积分20
12秒前
13秒前
彩色映雁完成签到 ,获得积分10
15秒前
Nuyoah完成签到 ,获得积分10
17秒前
研友_VZG7GZ应助淡淡博采纳,获得10
17秒前
惘然完成签到 ,获得积分10
18秒前
jll完成签到 ,获得积分10
18秒前
今后应助畅快沛白采纳,获得30
18秒前
chromium22完成签到,获得积分10
19秒前
HRZ完成签到 ,获得积分10
19秒前
Camellia完成签到,获得积分20
21秒前
CHEN完成签到 ,获得积分10
23秒前
TT木木完成签到,获得积分10
25秒前
佳丽发布了新的文献求助10
26秒前
祁邻完成签到 ,获得积分10
27秒前
why完成签到 ,获得积分10
28秒前
江氏巨颏虎完成签到,获得积分10
29秒前
学霸宇大王完成签到 ,获得积分10
31秒前
32秒前
jacob258完成签到 ,获得积分10
32秒前
战神林北完成签到,获得积分10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968154
求助须知:如何正确求助?哪些是违规求助? 3513149
关于积分的说明 11166686
捐赠科研通 3248410
什么是DOI,文献DOI怎么找? 1794206
邀请新用户注册赠送积分活动 874924
科研通“疑难数据库(出版商)”最低求助积分说明 804629