Using a Machine Learning Algorithm to Predict the Likelihood of Presence of Dental Caries among Children Aged 2 to 7

医学 口腔健康 儿童早期龋齿 牙科 算法 家庭医学 计算机科学
作者
Francisco Ramos-Gómez,Marvin Marcus,Carl A. Maida,Yan Wang,Janni J. Kinsler,Dayuan Xiong,Steve Y. Lee,Ron D. Hays,Jie Shen,James J. Crall,Honghu Liu
出处
期刊:Dentistry journal [MDPI AG]
卷期号:9 (12): 141-141 被引量:10
标识
DOI:10.3390/dj9120141
摘要

Dental caries is the most common chronic childhood infectious disease and is a serious public health problem affecting both developing and industrialized countries, yet it is preventable in most cases. This study evaluated the potential of screening for dental caries among children using a machine learning algorithm applied to parent perceptions of their child's oral health assessed by survey.The sample consisted of 182 parents/caregivers and their children 2-7 years of age living in Los Angeles County. Random forest (a machine learning algorithm) was used to identify survey items that were predictors of active caries and caries experience. We applied a three-fold cross-validation method. A threshold was determined by maximizing the sum of sensitivity and specificity conditional on the sensitivity of at least 70%. The importance of survey items to classifying active caries and caries experience was measured using mean decreased Gini (MDG) and mean decreased accuracy (MDA) coefficients.Survey items that were strong predictors of active caries included parent's age (MDG = 0.84; MDA = 1.97), unmet needs (MDG = 0.71; MDA = 2.06) and the child being African American (MDG = 0.38; MDA = 1.92). Survey items that were strong predictors of caries experience included parent's age (MDG = 2.97; MDA = 4.74), child had an oral health problem in the past 12 months (MDG = 2.20; MDA = 4.04) and child had a tooth that hurt (MDG = 1.65; MDA = 3.84).Our findings demonstrate the potential of screening for active caries and caries experience among children using surveys answered by their parents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮名半生发布了新的文献求助10
1秒前
1秒前
qkl-zyl完成签到,获得积分10
1秒前
虞美人发布了新的文献求助10
2秒前
共享精神应助Cc采纳,获得10
2秒前
woollen2022完成签到,获得积分10
2秒前
洁净的黑米完成签到,获得积分10
3秒前
4秒前
dudu完成签到 ,获得积分10
6秒前
8秒前
9秒前
菜大炮发布了新的文献求助10
11秒前
大脸猫完成签到 ,获得积分10
11秒前
慕青应助重要的白秋采纳,获得10
12秒前
Jasper应助allrubbish采纳,获得10
12秒前
13秒前
瀚森发布了新的文献求助10
14秒前
今天又来搬砖啦完成签到,获得积分10
14秒前
15秒前
ryan1300完成签到 ,获得积分10
16秒前
17秒前
Tangyartie完成签到 ,获得积分10
18秒前
清逸之风完成签到 ,获得积分10
18秒前
Cc发布了新的文献求助10
19秒前
马东完成签到,获得积分10
19秒前
单薄碧灵完成签到 ,获得积分10
21秒前
戴继超发布了新的文献求助10
22秒前
混子完成签到,获得积分20
22秒前
23秒前
平常天佑完成签到,获得积分10
23秒前
张张张完成签到 ,获得积分10
25秒前
YYY666完成签到,获得积分10
25秒前
情怀应助momo采纳,获得10
26秒前
完美的小虾米完成签到 ,获得积分10
27秒前
小星星完成签到 ,获得积分10
27秒前
英俊的铭应助chopin采纳,获得10
28秒前
混子发布了新的文献求助10
29秒前
卡戎529完成签到 ,获得积分10
29秒前
搜集达人应助轻松曲奇采纳,获得10
30秒前
文艺白柏完成签到 ,获得积分10
31秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165255
求助须知:如何正确求助?哪些是违规求助? 2816291
关于积分的说明 7912153
捐赠科研通 2475954
什么是DOI,文献DOI怎么找? 1318458
科研通“疑难数据库(出版商)”最低求助积分说明 632171
版权声明 602388