吸附
氨
电子转移
电化学
电催化剂
化学
法拉第效率
吉布斯自由能
无机化学
分析化学(期刊)
电极
材料科学
物理化学
热力学
有机化学
物理
色谱法
作者
Wenyang Fu,Zhongzheng Hu,Yang Zheng,Pei Su,Qizhan Zhang,Yongli Jiao,Minghua Zhou
标识
DOI:10.1016/j.cej.2021.133680
摘要
Compared to traditional haber–bosch process for synthetic ammonia, electrochemical reduction of nitrate to ammonia (ERNA) offers a promising and sustainable technology to generate ammonia at ambient temperature. However, the performance of ERNA is impeded by lacking of sound strategy for designing high-performance electrocatalyst. Here, a Cu based electrode with Cu2O/Cu interface was prepared by pulse electrodeposition and electroreduction, achieving the fast rate constant of 0.14 min−1 for reducing nitrate with a high ammonia yield rate of 2.17 mg cm-2h−1 (faradaic efficiency: 84.36%) and ammonia selectivity of 94.4% at −0.25 V vs. RHE. Particularly, density functional theory (DFT) calculations for the adsorption energy indicated that Cu2O/Cu interface alleviated adsorption energy of NO2- from −2.02 eV (pure Cu) to −1.59 eV, improving surface diffusion of adsorbed NO2-. And DFT calculations for electronic structure implied that Cu2O/Cu interface upshifted the d band center of Cu (-2.25 eV vs. −2.48 eV of pure Cu), boosting electron transfer to NO3-. Additionally, in-situ infrared spectroscopic analysis confirmed vital intermediates of NO2- and NH2OH on Cu2O/Cu to identify reaction pathway and Gibbs free energy diagram clarified this interface decreased reaction barrier of crucial step (reducing *NO2 to *NO) from 0.31 eV (pure Cu) to −0.77 eV for the enhancement of ERNA. Thereby, these findings demonstrated that Cu2O/Cu interface tunes mobility of NO2- and electron transfer to NO3- on Cu based electrocatalyst is an efficient method to promote performance of ERNA with high efficiency and rate.
科研通智能强力驱动
Strongly Powered by AbleSci AI