The Pulse of Urban Transport: Exploring the Co-evolving Pattern for Spatio-temporal Forecasting

计算机科学 代表(政治) 需求预测 需求模式 模式(计算机接口) 比例(比率) 需求特征 大数据 情态动词 按需 数据挖掘 运筹学 需求管理 地理 经济 数学 政治 统计 操作系统 政治学 宏观经济学 化学 高分子化学 多媒体 法学 地图学
作者
Jinliang Deng,Xiusi Chen,Zipei Fan,Renhe Jiang,Xuan Song,Ivor W. Tsang
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:15 (6): 1-25 被引量:19
标识
DOI:10.1145/3450528
摘要

Transportation demand forecasting is a topic of large practical value. However, the model that fits the demand of one transportation by only considering the historical data of its own could be vulnerable since random fluctuations could easily impact the modeling. On the other hand, common factors like time and region attribute, drive the evolution demand of different transportation, leading to a co-evolving intrinsic property between different kinds of transportation. In this work, we focus on exploring the co-evolution between different modes of transport, e.g., taxi demand and shared-bike demand. Two significant challenges impede the discovery of the co-evolving pattern: (1) diversity of the co-evolving correlation, which varies from region to region and time to time. (2) Multi-modal data fusion. Taxi demand and shared-bike demand are time-series data, which have different representations with the external factors. Moreover, the distribution of taxi demand and bike demand are not identical. To overcome these challenges, we propose a novel method, known as co-evolving spatial temporal neural network (CEST). CEST learns a multi-view demand representation for each mode of transport, extracts the co-evolving pattern, then predicts the demand for the target transportation based on multi-scale representation, which includes fine-scale demand information and coarse-scale pattern information. We conduct extensive experiments to validate the superiority of our model over the state-of-art models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不一样的光完成签到,获得积分10
刚刚
1秒前
彭于晏应助寂寞的寄松采纳,获得10
1秒前
山野发布了新的文献求助10
1秒前
Owen应助DeepLearning采纳,获得10
2秒前
3秒前
菲菲发布了新的文献求助10
3秒前
ziyuexu发布了新的文献求助10
4秒前
ZWK发布了新的文献求助10
4秒前
TiAmo给TiAmo的求助进行了留言
4秒前
6秒前
就晚安喽完成签到 ,获得积分10
6秒前
周宋完成签到 ,获得积分10
7秒前
可爱的函函应助log采纳,获得10
8秒前
柚子发布了新的文献求助10
9秒前
10秒前
姽婳wy发布了新的文献求助10
10秒前
小二郎应助Reid采纳,获得10
10秒前
舟舟完成签到 ,获得积分10
11秒前
香蕉觅云应助含蓄虔纹采纳,获得10
11秒前
SciGPT应助kingwill采纳,获得30
12秒前
yurunxintian完成签到,获得积分10
13秒前
大模型应助谦让真采纳,获得30
15秒前
15秒前
FIN应助科研通管家采纳,获得30
15秒前
赘婿应助科研通管家采纳,获得10
15秒前
英俊的铭应助科研通管家采纳,获得30
16秒前
16秒前
乐乐应助科研通管家采纳,获得10
16秒前
所所应助科研通管家采纳,获得10
16秒前
彳亍1117应助科研通管家采纳,获得20
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
小豆豆应助科研通管家采纳,获得10
16秒前
16秒前
天天快乐应助科研通管家采纳,获得10
17秒前
李爱国应助科研通管家采纳,获得10
17秒前
17秒前
在水一方应助科研通管家采纳,获得10
17秒前
FIN应助科研通管家采纳,获得30
17秒前
FIN应助科研通管家采纳,获得30
17秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962850
求助须知:如何正确求助?哪些是违规求助? 3508775
关于积分的说明 11142938
捐赠科研通 3241643
什么是DOI,文献DOI怎么找? 1791625
邀请新用户注册赠送积分活动 872998
科研通“疑难数据库(出版商)”最低求助积分说明 803571