Sparse-Coded Dynamic Mode Decomposition on Graph for Prediction of River Water Level Distribution

计算机科学 图形 数据挖掘 算法 理论计算机科学
作者
Yusuke Arai,Shogo Muramatsu,Hiroyasu Yasuda,K. Hayasaka,Yu Otake
标识
DOI:10.1109/icassp39728.2021.9414533
摘要

This work proposes a method for estimating dynamics on graph by using dynamic mode decomposition (DMD) and sparse approximation with graph filter banks (GFBs). The motivation of introducing DMD on graph is to predict multi-point river water levels for forecasting river flood and giving proper evacuation warnings. The proposed method represents a spatio-temporal variation of physical quantities on a graph as a time-evolution equation. Specifically, water level observation data available on the Internet is collected by web scraping. As well, the graph structure is defined based on numerical river information published by Ministry of Land, Infrastructure, Transport and Tourism (MILT) of Japan and the graph is used to construct GFBs for analyzing and synthesizing the water level data. GFBs work in combination with a sparse approximation algorithm for feature extraction of water level distribution. The features are exploited to derive the time-evolution equation through the extended DMD (EDMD) framework. The time-evolution equation is applied to predict river water level distribution. In order to verify the significance of the proposed method, the river water level prediction is conducted for real web-scraped data. The performance evaluation shows the superiority to the normal DMD approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
不安青牛应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
阔达紫青应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
不安青牛应助科研通管家采纳,获得10
1秒前
1秒前
Lucas应助科研通管家采纳,获得10
2秒前
聪慧小霜应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得30
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
Hui完成签到,获得积分10
2秒前
852应助科研通管家采纳,获得10
2秒前
wy.he应助科研通管家采纳,获得20
3秒前
wanci应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
鸣笛应助科研通管家采纳,获得20
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
不安青牛应助科研通管家采纳,获得10
3秒前
不安青牛应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
爱笑的小羽毛完成签到,获得积分20
4秒前
无花果应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
华仔应助en采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
lzj应助科研通管家采纳,获得20
4秒前
研友_VZG7GZ应助阿良采纳,获得10
4秒前
铁柱完成签到 ,获得积分20
5秒前
5秒前
wzz发布了新的文献求助10
5秒前
烂漫冬卉完成签到,获得积分10
5秒前
枝芽完成签到,获得积分10
5秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Ride comfort analysis of hydro-pneumatic suspension considering variable damping matched with dynamitic load 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4589872
求助须知:如何正确求助?哪些是违规求助? 4004895
关于积分的说明 12399651
捐赠科研通 3681863
什么是DOI,文献DOI怎么找? 2029343
邀请新用户注册赠送积分活动 1062883
科研通“疑难数据库(出版商)”最低求助积分说明 948536